ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 416
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
4.26. Запишите стационарное уравнение Шредингера для свободной частицы, которая движется вдоль оси , а также определите посредством его решения собственные значения энергии. Что можно сказать об энергетическом спектре свободной частицы?
А.[ , спектр непрерывный] В.[ , спектр дискретный]
С.[ , спектр дискретный] D.[ ,спектр дискретный]
4.27. Электрон в бесконечно глубоком одномерном прямоугольном потенциальном ящике находится в основном состоянии. Какова вероятность обнаружения электрона в средней трети ящика?
А. [0,609] В. [0,5] С. [0,195] D. [0,091]
4.28. Волновая функция описывает основное состояние частицы в бесконечно глубоком прямоугольном потенциальном ящике шириной . Вычислите вероятность нахождения частицы в малом интервале ∆ = 0,2 в двух случаях: 1) вблизи стенки ; 2) в средней части ящика .
А. [0,052; 0,4] В. [0,026; 0,2] С. [0,1; 0,4] D. [0,052; 0,8]
4.29. Электрон находится в бесконечно глубоком одномерном прямоугольном потенциальном ящике шириной . Вычислите наименьшую разность энергий двух соседних энергетических уровней
(в электронвольтах) электрона в двух случаях: 1) = 1 мкм; 2)
= 0,1 нм.
A. [1,1∙10-12 эВ; 110 эВ] В. [1,1∙10-16 эВ; 1,1 эВ]
C. [0,55∙10-13 эВ; 55 эВ] D. [5,5∙10-12 эВ; 1,1 эВ]
4.30. Вероятность обнаружить частицу на участке (a,b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле . Если - функция имеет вид, указанный на рисунке справа, то вероятность обнаружить частицу на участке , где – ширина ящика, равна: A. [2/3] В. [1/3] С. [4/3] D. [5/6]. | |
4.31. Пучок электронов с энергией Е = 15 эВ встречает на своем пути потенциальный барьер высотой U = 20 В и шириной = 0,1 нм. Определите коэффициент прозрачности потенциального барьера (коэффициент прохождения) D и коэффициент отражения R электронов от барьера (R + D = 1).
A. [D = 0,1; R = 0,9] В. [D = 0,9; R = 0,1]
С. [D = 0,5; R = 0,5] D. [D = 0,2; R = 0,8]
4.32. Частица массой m движется в одномерном потенциальном поле = (гармонический осциллятор). Собственная волновая функция основного состояния гармонического осциллятора имеет вид , где – нормировочный коэффициент; - положительная постоянная. Используя уравнение Шредингера, определите:
1) постоянную ; 2) энергию частицы в этом состоянии.
А. [ ;
] В. [ ; ]
С. [ ; ] D. [ ; ]
4.33. Покажите, что при kT >> Ei (малом параметре вырождения) квантовые распределения Бозе-Эйнштейна и Ферми-Дирака переходят в классическое распределение Максвелла – Больцмана, то есть бозонный и фермионный газы приобретают свойства классического идеального газа.
А. [ << 1; ]
4.34. Для каких квантовых частиц характерна знаковая неоднозначность волновой функции и какие значения спина имеют эти частицы?
А. [фермионов; имеют полуцелые значения спина]
В. [бозонов; имеют целые значения спина]
4.35. Для каких квантовых частиц характерна знаковая однозначность волновой функции и какие значения спина имеют эти частицы?
А. [бозонов; имеют целочисленные значения спина]
В. [фермионов; имеют полуцелочисленные значения спина]
4.3. Квантовые свойства атомов, молекул и твердых тел
Основные формулы и законы
-
Волновые функции связанных состояний (Е < 0) атома водорода имеют вид:
,
где n – главное квантовое число (n = 1, 2, 3, …), – орбитальное (азимутальное) квантовое число ( = 0, 1, 2, …, (n – 1)), m – магнитное квантовое число (m = 0, ±1, ±2, …, ± ), - радиальные функции, а
- сферические функции.
Квантовые числа n, , m являются характеристиками микросостояния частицы, в том числе и электрона в атоме водорода, и появляются при решении нерелятивистского уравнения Шредингера.
-
Квантовое магнитное спиновое число ms (ms=±1/2) электрона появляется лишь при решении релятивистского уравнения Дирака, т. е. спин является релятивистской характеристикой. -
Принцип Паули: в атоме два электрона не могут находиться в одном и том же квантовом состоянии (определяемом набором четырех квантовых чисел n, ,m, ms). -
Электронная конфигурация атома в основном состоянии 1s2 2s2 2p6 3s2 3p6 3d10…, где числа (n = 1, 2, 3, …) соответствуют главному квантовому числу, которое задает электронные слои (оболочки) K, L, M, N, …, а буквы латинского алфавита s, p, d, f соответствуют орбитальному квантовому числу ( = 0, 1, 2, 3), которое задает s, p, d, f - состояния (электронные подоболочки) атома, числа над s, p, d, f соответствуют числу электронов в соответствующих состояниях. -
Закон Мозли
,
где – характеристические частоты спектра; R=3,29∙10151/с – постоянная Ридберга; z – заряд ядра атома в относительных единицах;
σ - постоянная экранирования; m и n – квантовые числа, соответствующие энергетическим уровням, между которыми совершается переход электрона в атоме.
-
При σ=0 формула закона Мозли обращается в формулу, описывающую линейчатые спектры водородоподобных атомов
.
При σ = 0 и z = 1 формула закона Мозли совпадает с обобщенной формулой Бальмера для линейчатого спектра атома водорода.
-
Частоты излученного или поглощенного электромагнитного кванта молекулярного спектра
= (∆ Wэл. + ∆ Wкол. + ∆ Wвр.),
где ∆Wэл., ∆Wкол. и ∆Wвр. – разности энергий двух соответственно электронных, колебательных и вращательных уровней.
-
Средняя энергия квантового одномерного осциллятора
,
где - нулевая энергия; - постоянная Планка; - круговая частота колебаний осциллятора; k – постоянная Больцмана; T – термодинамическая температура.
-
Молярная внутренняя энергия системы, состоящей из невзаимодействующих квантовых осцилляторов
,
где – молярная газовая постоянная; = – характеристическая температура Эйнштейна.
-
Молярная теплоемкость кристаллического твердого тела в области низких температур (предельный закон Дебая)
( T << ),
где =