Файл: wirelesspowerspecificationpart1.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 13.04.2024

Просмотров: 350

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

 

 

 

 

System Description

 

 

 

 

 

 

Wireless Power Transfer

 

 

 

Version 1.1.1

 

 

 

 

 

 

 

 

Basic Power Transmitter Designs

 

 

Table 3-13: PID parameters for Operating Frequency control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

 

 

 

Symbol

 

 

Value

 

 

Unit

 

 

 

 

Proportional gain

 

 

 

 

 

 

 

10

 

 

mA-1

 

 

 

Integral gain

 

 

 

 

 

 

 

0.05

 

 

mA-1ms-1

 

 

 

Derivative gain

 

 

 

 

 

 

 

0

 

 

mA-1ms

 

 

 

Integral term limit

 

 

 

 

 

 

 

3,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PID output limit

 

 

 

 

 

 

 

20,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-14: Operating Frequency dependent scaling factor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency Range [kHz]

 

 

 

Scaling Factor

[Hz]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110…140

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

140…160

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

160…180

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180…205

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-15: PID parameters for duty cycle control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

 

 

 

Symbol

 

 

Value

 

 

Unit

 

 

 

 

Proportional gain

 

 

 

 

 

 

 

10

 

 

mA-1

 

 

 

Integral gain

 

 

 

 

 

 

 

0.05

 

 

mA-1ms-1

 

 

 

Derivative gain

 

 

 

 

 

 

 

0

 

 

mA-1ms

 

 

 

Integral term limit

 

 

 

 

 

 

 

3,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PID output limit

 

 

 

 

 

 

 

20,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling factor

 

 

 

 

 

 

 

 

–0.01

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Wireless Power Consortium, July 2012

31


 

System Description

 

Wireless Power Transfer

Basic Power Transmitter Designs

Version 1.1.1

3.2.6Power Transmitter design A6

Figure 3-20 illustrates the functional block diagram of this design, which consists of two major functional units, namely a Power Conversion Unit and a Communications and Control Unit.

Input Power

Inverter

Coil

Selection

Control &

Communications

Unit Primary

Coils

Current

Sense

Unit Conversion Power

Figure 3-20: Functional block diagram of Power Transmitter design A6

The Power Conversion Unit on the right-hand side of Figure 3-20 comprises the analog parts of the design. The inverter converts the DC input to an AC waveform that drives a resonant circuit, which consists of the selected Primary Coil plus a series capacitor. The selected Primary Coil is one from a linear array of partially overlapping Primary Coils, as appropriate for the position of the Power Receiver relative to the Primary Coils. Selection of the Primary Coil proceeds by the Power Transmitter attempting to establish communication with a Power Receiver using any of the Primary Coils. Note that the array may consist of a single Primary Coil only, in which case the selection is trivial. Finally, the current sense monitors the Primary Coil current.

The Communications and Control Unit on the left-hand side of Figure 3-20 comprises the digital logic part of the design. This unit receives and decodes messages from the Power Receiver, configures the Coil Selection block to connect the appropriate Primary Coil, executes the relevant power control algorithms and protocols, and drives the frequency of the AC waveform to control the power transfer. The Communications and Control Unit also interfaces with other subsystems of the Base Station, e.g. for user interface purposes.

3.2.6.1Mechanical details

Power Transmitter design A6 includes one or more Primary Coils as defined in Section 3.2.6.1.1, Shielding as defined in Section 3.2.6.1.2, an Interface Surface as defined in Section 3.2.6.1.3.

3.2.6.1.1Primary Coil

The Primary Coil is of the wire-wound type, and consists of no. 20 AWG (0.81 mm diameter) type 2 litz wire having 105 strands of no. 40 AWG (0.08 mm diameter), or equivalent. As shown in Figure 3-21, the Primary Coil has a rectangular shape and consists of a single layer. Table 3-16 lists the dimensions of the Primary Coil.

32

© Wireless Power Consortium, July 2012

System Description

Wireless Power Transfer

Version 1.1.1

Basic Power Transmitter Designs

dow diw

dil

dol

Figure 3-21: Primary Coil of Power Transmitter design A6

Table 3-16: Primary Coil parameters of Power Transmitter design A6

 

Parameter

 

 

Symbol

 

 

Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outer length

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Inner length

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Outer width

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Inner width

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Thickness

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Number of turns per layer

 

 

 

 

 

12 turns

 

 

 

 

 

 

 

 

 

 

Number of layers

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Power Transmitter design A6 contains at least one Primary Coil. Odd numbered coils are placed alongside

each other with a displacement of

mm between their centers.

Even numbered coils are

placed orthogonal to the odd numbered coils with a displacement of

mm between their

centers. See Figure 3-22.

 

 

Coil 2

Coil 1

Coil 3

doe

doo

Figure 3-22: Primary Coils of Power Transmitter design A6

© Wireless Power Consortium, July 2012

33


 

System Description

 

Wireless Power Transfer

Basic Power Transmitter Designs

Version 1.1.1

3.2.6.1.2Shielding

As shown in Figure 3-23, soft-magnetic material protects the Base Station from the magnetic field that is generated in the Primary Coil. The Shielding extends to at least the outer dimensions of the Primary Coils, has a thickness of at least 0.5 mm, and is placed below the Primary Coil at a distance of at most

mm. This version 1.1.1 of the System Description Wireless Power Transfer, Volume I, Part 1, limits the composition of the Shielding to a choice from the following list of materials:

Material 44 — Fair Rite Corporation.

Material 28 — Steward, Inc.

CMG22G — Ceramic Magnetics, Inc.

Kolektor 22G — Kolektor.

LeaderTech SB28B2100-1 — LeaderTech Inc.

TopFlux “A“ — TopFlux.

TopFlux “B“ — TopFlux.

ACME K081 — Acme Electronics.

L7H — TDK Corporation.

PE22 — TDK Corporation.

FK2 — TDK Corporation.

Interface

Surface

5 mm min.

dz

 

Primary Coils

Base

Shielding

Station

 

ds

Figure 3-23: Primary Coil assembly of Power Transmitter design A6

3.2.6.1.3Interface Surface

As shown in Figure 3-23, the distance from the Primary Coil to the Interface Surface of the Base Station is mm, across the top face of the Primary Coil. In the case of a single Primary Coil, the distance from the Primary Coil to the Interface Surface of the Base Station is mm, across the top face of

the Primary Coil. In addition, the Interface Surface of the Base Station extends at least 5 mm beyond the outer dimensions of the Primary Coils.

3.2.6.1.4Inter coil separation

If the Base Station contains multiple type A6 Power Transmitters, the Primary Coils of any pair of those Power Transmitters shall have a center-to-center distance of at least mm.

3.2.6.2Electrical details

As shown in Figure 3-24, Power Transmitter design A6 uses a half-bridge inverter to drive an individual Primary Coil and a series capacitance. Within the Operating Frequency range specified below, the

assembly of Primary Coils and Shielding has a self inductance

μH for coils closest to the

 

 

34

© Wireless Power Consortium, July 2012


 

 

System Description

 

 

Wireless Power Transfer

Version 1.1.1

 

Basic Power Transmitter Designs

Interface Surface .and inductance

μH for coils furthest from the Interface Surface. The

value of the

series capacitance is

μF for coils closest to the Interface Surface and

 

μF for coils furthest from the Interface Surface. The input voltage to the half-bridge

inverter is

V. (Informative) Near resonance, the voltage developed across the series capacitance can

reach levels exceeding 100 V pk-pk.

Power Transmitter design A6 uses the Operating Frequency and duty cycle of the Power Signal in order to control the amount of power that is transferred. For this purpose, the Operating Frequency range of the half-bridge inverter is kHz with a duty cycle of 50%; and its duty cycle range is 10…50%

at an Operating Frequency of 205 kHz. A higher Operating Frequency or lower duty cycle result in the transfer of a lower amount of power. In order to achieve a sufficiently accurate adjustment of the amount of power that is transferred, a type A6 Power Transmitter shall control the Operating Frequency with a resolution of

 

kHz,

for fop in the 115…175 kHz range;

 

kHz,

for fop in the 175…205 kHz range;

or better. In addition, a type A6 Power Transmitter shall control the duty cycle of the Power Signal with a resolution of 0.1% or better.

When a type A6 Power Transmitter first applies a Power Signal (Digital Ping; see Section 5.2.1), it shall use an initial Operating Frequency of 175 kHz (and a duty cycle of 50%).

Control of the power transfer shall proceed using the PID algorithm, which is defined in Section5.2.3.1. The controlled variable ( ) introduced in the definition of that algorithm represents the Operating Frequency or the duty cycle. In order to guarantee sufficiently accurate power control, a type A6 Power Transmitter shall determine the amplitude of the Primary Cell current—which is equal to the Primary Coil current—with a resolution of 7 mA or better. Finally, Table 3-17, Table 3-18, and Table 3-19 provide the values of several parameters, which are used in the PID algorithm.

 

 

Half-bridge

 

 

Inverter

 

Control

CP

 

 

Input

 

 

Voltage +

 

LP

 

 

Figure 3-24: Electrical diagram (outline) of Power Transmitter design A6

© Wireless Power Consortium, July 2012

35


 

 

 

 

System Description

 

 

 

 

 

 

Wireless Power Transfer

 

 

 

Basic Power Transmitter Designs

 

 

 

 

 

 

 

 

 

 

 

 

 

Version 1.1.1

 

 

Table 3-17: PID parameters for Operating Frequency control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

 

 

 

Symbol

 

 

Value

 

 

Unit

 

 

 

 

Proportional gain

 

 

 

 

 

 

 

10

 

 

mA-1

 

 

 

Integral gain

 

 

 

 

 

 

 

0.05

 

 

mA-1ms-1

 

 

 

Derivative gain

 

 

 

 

 

 

 

0

 

 

mA-1ms

 

 

 

Integral term limit

 

 

 

 

 

 

 

3,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PID output limit

 

 

 

 

 

 

 

20,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-18: Operating Frequency dependent scaling factor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency Range [kHz]

 

 

 

Scaling Factor

[Hz]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

115…140

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

140…160

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

160…180

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180…205

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-19: PID parameters for duty cycle control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

 

 

 

Symbol

 

 

Value

 

 

Unit

 

 

 

 

Proportional gain

 

 

 

 

 

 

 

10

 

 

mA-1

 

 

 

Integral gain

 

 

 

 

 

 

 

0.05

 

 

mA-1ms-1

 

 

 

Derivative gain

 

 

 

 

 

 

 

0

 

 

mA-1ms

 

 

 

Integral term limit

 

 

 

 

 

 

 

3,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PID output limit

 

 

 

 

 

 

 

20,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling factor

 

 

 

 

 

 

 

 

–0.01

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

© Wireless Power Consortium, July 2012