ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 16.04.2024

Просмотров: 204

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Рис. 2.5.Структура «неполное ветвление»

Цикл (или повторение)предусматривает повторное выполнение некоторого набора команд программы. Если бы циклы не существовали, вряд ли занятие программированием было бы оправданным: циклы позволяют записать длинные последовательности операций обработки данных с помощью небольшого числа повторяющихся команд.

Цикл начинается с проверки логического выражения. Если оно истинно, то выполняется «a», затем все повторяется снова, пока логическое выражение сохраняет значение «истина». Как только оно становится ложным, выполнение операций «а» прекращается и управление передается по программе дальше.

Рис. 2.6.Структура цикла «пока»

Рис. 2.7.Структура цикла «до»

Эти структуры можно комбинировать одну с другой - как путем организации их следований, так и путем создания суперпозиций (вложений одной структуры в другую) - сколь угодно разнообразно для выражения логики алгоритма решения любой задачи.

Еще одним важным компонентом структурного подхода к разработке алгоритмов является модульность. Модуль - это последовательность логически связанных операций, оформленных как отдельная часть программы. Использование модулей имеет следующие преимущества:

1) возможность создания программы несколькими программистами;

2) простота проектирования и последующих модификаций программы;

3) упрощение отладки программы - поиска и устранения в ней ошибок;

4) возможность использования готовых библиотек наиболее употребительных модулей.

Но, пожалуй, самым важным достижением структурного подхода к разработке алгоритмов является нисходящее проектирование программ, основанное на идее уровней абстракции, которые становятся уровнями модулей в разрабатываемой программе. На этапе проектирования строится схема иерархии, изображающая эти уровни. Схема иерархии позволяет программисту сначала сконцентрировать внимание на определении того, что надо сделать в программе, а лишь затем решать, как это надо делать. При нисходящем проектировании исходная, подлежащая решению задача разбивается на ряд подзадач, подчиненных по своему содержанию главной задаче. Такое разбиение называется детализацией или декомпозицией.


На практике при составлении блок-схем оказывается удобным использовать и другие графические знаки (некоторые из них приведены на рис. 2.8).

Рис.2.8.Некоторые дополнительные конструкции для изображения блок-схем алгоритмов


      1. 2.4. Свойства алгоритмов

Алгоритм должен быть составлен таким образом, чтобы исполнитель, в расчете на которого он создан, мог однозначно и точно следовать командам алгоритма и эффективно получать определенный результат. Это накладывает на записи алгоритмов ряд обязательных требований, суть которых вытекает, вообще говоря, из приведенного выше неформального толкования понятия алгоритма. Сформулируем эти требования в виде перечня свойств, которым должны удовлетворять алгоритмы, адресуемые заданному исполнителю.

1. Одно из первых требований, которое предъявляется к алгоритму, состоит в том, что описываемый процесс должен быть разбит на последовательность отдельных шагов. Рассмотренное свойство алгоритмов называют дискретностью.

2. Используемые на практике алгоритмы составляются с ориентацией на определенного исполнителя. Чтобы составить для него алгоритм, нужно знать, какие команды этот исполнитель может понять и исполнить, а какие - не может. Это свойство алгоритмов будем называть понятностью.

3. Будучи понятным, алгоритм не должен содержать предписаний, смысл которых может восприниматься неоднозначно, т.е. одна и та же команда, будучи понятна разным исполнителям, после исполнения каждым из них должна давать одинаковый результат. Отмеченное свойства алгоритмов называют определенностьюили детерминированностью.

4. Обязательное требование к алгоритмам - результативность.Смысл этого требования состоит в том, что при точном исполнении всех предписаний алгоритма процесс должен прекратиться за конечное число шагов и при этом должен получиться определенный результат. Вывод о том, что решения не существует - тоже результат.

5. Наиболее распространены алгоритмы, обеспечивающие решение не одной конкретной задачи, а некоторого класса задач данного типа. Это свойство алгоритма называют массовостью.В простейшем случае массовость обеспечивает возможность использования различных исходных данных.

    1. § 3. Программирование

3.1 Классификация языков программирования

В течение многих лет программное обеспечение строилось на основе операциональных и процедурных языков, таких как Фортран, Бейсик, Паскаль, Ада, Си. И сегодня современные версии этих и им подобных языков (Модула, Форт и др.) доминируют при разработке прикладных программных средств. Однако по мере эволюции языков программирования получили широкое распространение и другие, принципиально иные, подходы к созданию программ.


Классическое операциональное и/или процедурное программирование требует от программиста детального описания того, как решать задачу, т.е. формулировки алгоритма и его специальной записи. При этом ожидаемые свойства результата обычно не указываются. Основные понятия языков этих групп - оператор и данные. При процедурном подходе операторы объединяются в группы - процедуры. Структурное программирование в целом не выходит за рамки этого направления, оно лишь дополнительно фиксирует некоторые полезные приемы технологии программирования.

Принципиально иное направление в программировании связано с методологиями (иногда говорят «парадигмами») непроцедурного программирования. К ним можно отнести объектно-ориентированное и декларативное программирование. Объектно-ориентированный язык создает окружение в виде множества независимых объектов. Каждый объект ведет себя подобно отдельному компьютеру, их можно использовать для решения задач как «черные ящики», не вникая во внутренние механизмы их функционирования. Из языков объектного программирования, популярных среди профессионалов, следует назвать прежде всего Си++, для более широкого круга программистов предпочтительны среды типаDelphiиVisualBasic.

Рис. 3.1.Классификация языков программирования

При использовании декларативного языка программист указывает исходные информационные структуры, взаимосвязи между ними и то, какими свойствами должен обладать результат. При этом процедуру его получения («алгоритм») программист не строит (по крайней мере, в идеале). В этих языках отсутствует понятие «оператор» («команда»). Декларативные языки можно подразделить на два семейства - логические (типичный представитель - Пролог) и функциональные (Лисп). По всей видимости, непроцедурные языки имеют большое будущее. Все сказанное выше можно отобразить схемой - крупноструктурной классификацией языков программирования. В ней указаны основные методологии программирования; в нижнем ряду, в скобках - типичные языки соответствующих групп.


      1. 3.2. Понятие о языках программирования высокого уровня

Языки программирования - это формальные языки специально созданные для общения человека с компьютером. Каждый язык программирования, равно как и «естественный» язык (русский, английский и т.д.), имеет алфавит, словарный запас, свои грамматику и синтаксис, а также семантику.

Алфавит- фиксированный для данного языка набор основных символов, допускаемых для составления текста программы на этом языке.

Синтаксис- система правил, определяющих допустимые конструкции языка программирования из букв алфавита.

Семантика- система правил однозначного толкования отдельных языковых конструкций, позволяющих воспроизвести процесс обработки данных.

При описании языка и его применении используют понятия языка. Понятиеподразумевает некоторую синтаксическую конструкцию и определяемые ею свойства программных объектов или процесса обработки данных.

Взаимодействие синтаксических и семантических правил определяют те или иные понятия языка, например, операторы, идентификаторы, переменные, функции и процедуры, модули и т.д. В отличие от естественных языков правила грамматики и семантики для языков программирования, как и для всех формальных языков, должны быть явно, однозначно и четко сформулированы.

Языки программирования, имитирующие естественные языки, обладающие укрупненными командами, ориентированными на решение прикладных содержательных задач, называют языками «высокого уровня». В настоящее время насчитывается несколько сотен таких языков, а если считать и их диалекты, то это число возрастет до нескольких тысяч. Языки программирования высокого уровня существенно отличаются от машинно-ориентированных (низкого уровня) языков. Во-первых, машинная программа в конечном счете записывается с помощью лишь двух символов 0 и 1. Во-вторых, каждая ЭВМ имеет ограниченный набор машинных операций, ориентированных на структуру процессора. Как правило, этот набор состоит из сравнительно небольшого числа простейших операций, типа: переслать число в ячейку; считать число из ячейки; увеличить содержимое ячейки на +1 и т.п. Команда на машинном языке содержит очень ограниченный объем информации, поэтому она обычно определяет простейший обмен содержимого ячеек памяти, элементарные арифметические и логические операции. Команда содержит код и адреса ячеек, с содержимым которой выполняется закодированное действие.