ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.08.2024
Просмотров: 376
Скачиваний: 0
критерий надежности материала, с помощью которого прогнозируют работоспособность детали, рассчитанную на циклическую прочность по ограниченному пределу выносливости. При высокой живучести (малой СРТУ) можно своевременно путем дефектоскопии обнаружить трещину, заменить деталь и обеспечить безаварийную работу конструкции.
ФИЗИЧЕСКИЕ СВОЙСТВА МАТЕРИАЛОВ
Наиболее важными физическими свойствами, значения которых учитывают при практическом использовании материалов, являются плотность, теплоемкость, теплопроводность, тепловое расширение, электропроводность. Особые магнитные свойства железа, никеля, кобальта и их сплавов, а также ферритов, выделили их в группы материалов исключительной ценности — ферро- и ферримагнетики.
Физические свойства определяются типом межатомной связи и химическим составом материалов, температурой и давлением. Для большинства процессов обработки материалов давления не превышают 500 МПа. Такие давления практически не влияют на значения физических свойств. Различают зависимые и независимые от структуры материала физические свойства. Значения последних определяются только химическим составом материала и температурой.
При нагреве физические свойства изменяются нелинейно. Приближенно они характеризуются соответствующими температурными коэффициентами. Например, удельное электросопротивление ρ при нагреве на Т определяется зависимостью
рт = ро(1 + βΔТ),
где ро, рт — удельное электросопротивление на нижней и верхней границе интервала температур T; β — температурный коэффициент. Так как значения температурных коэффициентов малы, то аналогичные линейные зависимости свойств от температуры применимы в широких интервалах температур с достаточной для практических целей точностью.
Плотность существенно зависит от типа межатомной связи. Максимальную плотность имеют материалы с ненаправленными металлическими или ионными связями. Направленная ковалентная связь предопределяет менее плотное расположение атомов.
У металлов плотность изменяется от 22,5 г/см3 у осмия до 0,534 г/см у лития. Легирование сплава более тяжелыми элементами, чем основа, увеличивает, а более легкими — уменьшает его плотность. Масштабы легирования ограничены техническими и экономическими соображениями. Плотность основы является определяющей для группы сплавов разного химического состава на основе данного металла.
Пористость уменьшает плотность. Для порошковых сплавов и других пористых материалов она является одним из критериев качества. Пористость оценивают по фактической плотности материала и определяют методом
гидростатического взвешивания или другими способами.
Уменьшение расхода конструкционных материалов и снижение массы металлоконструкций и машин является тенденцией современного машиностроения. Чем меньше плотность материалов, тем ниже динамические нагрузки на детали и меньше расход энергии на эксплуатацию машины.
Преимущество легких материалов над тяжелыми становится более наглядным при сравнении материалов по их удельной прочности σв/γg и удельной жесткости E/γg. По этим характеристикам первое место занимают композиционные материалы, а сплавы алюминия (дуралюмины) не уступают более прочным легированным конструкционным сталям.
При нагреве плотность материалов уменьшается из-за теплового расширения.
Тепловое расширение — это изменение объема (линейных размеров) тела при повышении температуры при постоянном давлении. В основе теплового расширения лежит несимметричность тепловых колебаний атомов, поэтому при повышении температуры увеличиваются средние межатомные расстояния.
Для практических целей пользуются средними значениями коэффициентов объемного и линейного αl расширения:
где V, l — объем и длина образца соответственно; V, L — изменения объема и длины при повышении температуры на T. В общем случае
β= α1+ α2 + α3,
где α1 α2 и α3 — соответственно коэффициенты линейного расширения по тремя осям симметрии кристалла (табл. 2.1).
Для кристаллов кубической системы, а также для стекла и других изотропных материалов с аморфной структурой β = 3α. В кристаллах с низкой симметрией отдельные слагаемые коэффициента объемного расширения могут принимать отрицательные значения. При поляризации атомов
ипоявлении дальнодействующих составляющих межатомного взаимодействия коэффициент β становится отрицательным. Например, германий при нагреве от 15 до 40 К не расширяется, а сжимается. Среди полимеров самое большое тепловое расширение имеют неполярные полимеры, у которых силы Ван-дер-Ваальса малы.
Создание текстур в металлических сплавах, ориентация макромолекул в полимерах отражаются на значениях коэффициента линейного расширения: они существенно различаются в направлении преимущественной ориентации
ив поперечном направлении.
Тепловое расширение полимеров уменьшается при усилении межмолекулярного притяжения благодаря взаимодействию диполей, наличии водородных и химических связей между молекулами.
Тепловое расширение стекол по мере повышения содеражния щелочных оксидов Ме2О возрастает от α = 0,56 • 10 -6 К-1 у кварцевого стекла до α < 6 • 10 -6 К-1 у так называемых твердых стекол и α > 6 • 10 -6 К-1 у так называемых мягких стекол, к которым относится большая часть промышленных стекол (а = (6.. .9) • 10 -6 К-1).
Различие значений коэффициента теплового расширения двух соединяемых материалов является причиной появления значительных термических напряжений. Согласование значений α при соединении стекол с металлами необходимо при впаивании металлических проводников в стекла. Получаемые спаи отличаются простотой конструкции и надежностью в эксплуатации.
Тепловое расширение учитывают при расчете прессовых посадок, сварке и пайке разнородных материалов, изготовлении аппаратуры из двухслойных сталей и ее эксплуатации, при выборе клеев и эксплуатации машин и приборов в изменяющихся температурных полях. У большинства материалов при повышении температуры коэффициенты теплового расширения увеличиваются. При термоциклировании или частых колебаниях температур в изделиях и деталях создаются неоднородные температурные поля и возникают напряжения. Работа материала при повышенных температурах и меняющихся напряжениях сопровождается появлением трещин и разрушением даже, если эти материалы являются высокопластичными. Наиболее стойки к термической усталости и разрушению при термических ударах материалы, в которых малое тепловое расширение сочетается с высокой теплопроводностью.
Теплопроводностью называется перенос тепловой энергии в твердых телах, жидкостях и газах при макроскопической неподвижности частиц. Перенос теплоты происходит от более горячих частиц к холодным и подчиняется закону Фурье:
q = -λ gradT,
где q — плотность теплового потока, Дж/м2·с; λ — теплопроводность,
Вт/(м·К).
Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала.
Теплота в твердых телах переносится электронами и фононами, т.е.
λ = λэ + λф.
Механизм передачи теплоты в первую очередь определяется типом связи: в металлах теплоту переносят электроны; в материалах с ковалентным или ионным типом связи — фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят теплоту, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление.
Кристаллическая решетка создает периодическое энергетическое пространство, в котором передача теплоты электронами или фононами облегчена по сравнению с аморфным состоянием (табл. 2.2).
Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом — основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких
фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.
Теплопроводность пористых керамических и металлических материалов независимо от типа межатомной связи можно оценить по формуле
λПОP ≈ λ(1 - р),
где λ — теплопроводность беспористого материала, Вт/(м·К); р — доля пор в объеме пористого материала.
Графит имеет высокую теплопроводность. При передаче теплоты параллельно слоям атомов углерода базисной плоскости теплопроводность графита превышает теплопроводность меди более чем в 2 раза (табл. 2.3).
Разветвленные пластины графита в сером чугуне имеют структуру монокристалла, и поэтому он имеет высокую теплопроводность
(50 —70 Вт/(м • K)). Высокопрочный чугун с шаровидным графитом при той же объемной доле графита имеет теплопроводность 25.. .40 Вт/м • К, что почти вдвое меньше по сравнению с серым чугуном.
При нагреве теплопроводности сталей разных классов сближаются
(рис. 2.10).
Стекло имеет низкую теплопроводность. Полимерные материалы плохо проводят теплоту, теплопроводность большинства термопластов не превышает 1,5 Вт/(м·К).
Теплоемкость — это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость — количество энергии, поглощаемой единицей массы при нагреве на один градус.
У металлических сплавов удельная теплоемкость находится в пределах 100...2000 Дж/(кг • К). Тугоплавкие металлы характеризуются низкими значениями (134 Дж/(кг·К) у W и 254 Дж/(кг·К) у Мо, а легкие металлы, напротив, высокими значениями теплоемкости (896, 1017 и 1750 Дж/(кг·К), у Al, Mg и Be соответственно). У большинства металлов теплоемкость составляет 300 - 400 Дж/(кг·К). Теплоемкость металлических материалов растет с повышением температуры.
Полимерные материалы, как правило, имеют удельную теплоемкость 1000 Дж/(кг·К) и более.
Электрические свойства материалов характеризуются наличием носителей зарядов — электронов или ионов — и свободой их передвижения под действием электрического поля.
Высокие энергии ковалентной и ионной связи сообщают материалам с этими типами связи свойства диэлектрика. Их слабая электрическая проводимость обусловлена влиянием примесей, причем под влиянием влаги, образующей с примесями проводящие растворы, электропроводность таких материалов возрастает.
Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления: у металлов он положителен, у материалов с ковалентным и ионным типом связи — отрицателен. При
нагреве металлов концентрация носителей зарядов — электронов не увеличивается, а сопротивление их движению возрастает из-за увеличения амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов. По этой причине удельное электросопротивление таких материалов при нагреве снижается. Начиная с
(0,8 - 0,9) Тпл концентрация носителей заряда становится большой, а сами материалы делаются проводящими.
ЛЕКЦИЯ. ФОРМИРОВАНИЕ СТРУКТУРЫ ЛИТЫХ МАТЕРИАЛОВ
Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кристаллизацией.
Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией. Процесс кристаллизации состоит из двух одновременно идущих процессов— зарождения и роста кристаллов. Кристаллы могут зарождаться самопроизвольно — самопроизвольная кристаллизация — или расти на имеющихся готовых центрах кристаллизации — несамопроизвольная кристаллизация.
САМОПРОИЗВОЛЬНАЯ КРИСТАЛЛИЗАЦИЯ
Самопроизвольная кристаллизация обусловлена стремлением вещества иметь более устойчивое состояние, характеризуемое уменьшением термодинамического потенциала G.
С повышением температуры термодинамический потенциал вещества как в твердом, так и в жидком состоянии уменьшается, что показано на рис.
3.1.
Температура, при которой термодинамические потенциалы вещества в твердом и жидком состояниях равны, называется равновесной температурой кристаллизации. Кристаллизация происходит в том случае, если термодинамический потенциал вещества в твердом состоянии будет меньше термодинамического потенциала вещества в жидком состоянии, т.е. при переохлаждении жидкого металла до температур ниже равновесной. Плавление – процесс, обратный кристаллизации, происходит при температуре выше равновесной, т.е. при перегреве. Разница между реальными температурами плавления и кристаллизации называется температурным гистерезисом.
Поскольку жидкий металл обладает большей внутренней энергией, чем твердый, при кристаллизации выделяется теплота. Между теплотой Q и температурой кристаллизации Tк существует определенная связь. Так как при равновесной температуре кристаллизации термодинамические потенциалы в