ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.08.2024
Просмотров: 375
Скачиваний: 0
жидком и твердом состояниях равны, из формулы (1.1) следует, что
Параметр S = Q/TK характеризует упорядоченность в расположении атомов при кристаллизации. В зависимости от сил межатомной связи теплота кристаллизации для различных металлов изменяется от 2500 Дж/моль (например, Na, К) до 20000 Дж/моль (например, W). Когда кристаллизуется чистый элемент, отвод теплоты, происходящий вследствие охлаждения, компенсируется теплотой кристаллизации. В связи с этим на кривой охлаждения, изображаемой в координатах температура — время, процессу кристаллизации соответствует горизонтальный участок (рис. 3.2). При большом объеме жидкого металла выделяющаяся при кристаллизации теплота повышает температуру практически до равновесной (см. рис. 3.2, кривая а); при малом объеме металла выделяющейся теплоты недостаточно, вследствие чего кристаллизация происходит с переохлаждением по сравнению с равновесной температурой (см. рис. 3.2, кривая б).
Разница между равновесной ТKи реальной Т температурой кристаллизации называется степенью переохлаждения AT. Степень переохлаждения зависит от природы металла. Она увеличивается с повышением чистоты металла и ростом скорости охлаждения.
Обычная степень переохлаждения металлов при кристаллизации в производственных условиях колеблется от 10 до 30 ° С; при больших скоростях охлаждения она может достигать сотен градусов. Ниже приведены значения степени переохлаждения для некоторых металлов:
Me . . . |
Pb |
Sn |
Sb |
Au |
Cu |
Fe |
Ni |
Co |
Pt |
T, °C . . . |
80 |
118 |
135 |
230 |
236 |
295 |
319 |
330 |
370 |
Степень перегрева при плавлении металлов, как правило, не превышает нескольких градусов.
В жидком состоянии атомы вещества вследствие теплового движения
перемещаются беспорядочно. В то же время в жидкости имеются группировки атомов небольшого объема, в пределах которых расположение атомов вещества во многом аналогично их расположению в решетке кристалла. Эти группировки не устойчивы, он рассасываются и вновь появляются в жидкости. При переохлаждении жидкости некоторые из них (наиболее крупные) становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Образованию зародышей способствуют флуктуации энергии т.е. отклонения энергии группировок атомов в отдельных зонах жидкого металла от некоторого среднего значения. Размер образовавшегося зависит от величины зоны флуктуации.
Появление центров изменяет термодинамический потенциал системы Gобщ (рис 3.3). С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал уменьшается на V GV(G1), с другой – он увеличивается вследствие появления поверхности раздела между жидкостью и кристаллическим зародышем на величину, равную Sσ(G2 ):
Если принять, что зародыш имеет форму куба с ребром А, то общее изменение термодинамического потенциала
Go6щ = A3 GV + 6А2σ. (3.3)
Из уравнения (3.3) следует, что зависимость изменения термодинамического потенциала от размера зародыша имеет максимум (см. рис. 3.3) при некотором значении А, названном критическим. Зародыши с размером больше критического вызывают уменьшение G0бщ и поэтому являются устойчивыми, способными к росту. Зародыши, имеющие размер меньше критического, нестабильны и растворяются в жидкости, поскольку вызывают увеличение Gобщ. Для определения критического значения А нужно продифференцировать G по А и приравнять производную к нулю: dΔσобщ/dА = 0. Тогда
Акр = 4σ/ GV, |
(3.4) |
С увеличением степени переохлаждения поверхностное натяжение изменяется незначительно, a GV быстро повышается, а следовательно, критический размер зародыша убывает и появляется больше зародышей, способных к росту. В этом легко убедиться, если подсчитать критический размер зародыша, например железа, при разных степенях переохлаждения, например: ΔТ1 = 10 К и ΔТ2 = 100 К. Зная удельную скрытую теплоту плавления железа Q = 1,5 • 10 3 Дж/см3 и температуру его плавления (кристаллизации) Тк = 1812 К, по формуле (3.2) определяем AGV при АТХ = 10 К: AGy = 1,5- 103 -10/1812 = 8,278 Дж/см3. Подставляя полученное значение GV и значение σ (для железа оно равно 204 • 10 -7 Дж/см2) в формулу (3.4), находим
АКр = 4 • 204 · 10-7/8,278 = 98,6 × 10 -7 см = 98,6 нм.
Аналогичные расчеты, проведенные для ΔТ2 = 100 ° С, показывают, что в этом случае Акр = 9,86 нм.
Скорость процесса и окончательный размер кристаллов при затвердевании определяются соотношением между скоростью образования центров кристаллизации и скоростью роста. Первая измеряется числом зародышей, образующихся в единицу времени в единице объема (мм-3 • с-1), вторая — увеличением линейного размера растущего кристалла в единицу времени (мм/с). Оба процесса связаны с перемещениями атомов и зависят от температуры (рис. 3.4).
Для металлов, которые в обычных условиях кристаллизации не склонны к большим переохлаждениям, как правило, характерны восходящие ветви кривых. При небольших степенях переохлаждения, когда зародыш критического размера велик, а скорость образования зародышей мала, при затвердевании формируется крупнокристаллическая структура. Небольшие степени переохлаждения достигаются при заливке жидкого металла в форму с низкой теплопроводностью (земляная, шамотовая) или в подогретую металлическую форму. Увеличение переохлаждения происходит при заливке
жидкого металла в холодные металлические формы, а также при уменьшении толщины стенок отливки. Поскольку при этом скорость образования зародышей увеличивается более интенсивно, чем скорость их роста, получаются более мелкие кристаллы.
НЕСАМОПРОИЗВОЛЬНАЯ КРИСТАЛЛИЗАЦИЯ
В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся центров кристаллизации. Такими центрами, как правило, являются частицы тугоплавких неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется несамопроизвольной, или гетерогенной. При несамопроизвольной кристаллизации роль зародышей могут играть и стенки формы.
Наличие готовых центров кристаллизации приводит к уменьшению размера кристаллов при затвердевании. Эффект измельчения структуры значительно увеличивается при соблюдении структурного и размерного соответствия (расхождение в межатомных размерах не должно превышать 5
— 7 %) примесной фазы с основным металлом, которое способствует сопряжению их кристаллических решеток. Например, примесь титана в алюминии образует тугоплавкие включения фазы TiAl3 с тетрагональной кристаллической решеткой, которая хорошо сопрягается с ГЦК решеткой алюминия по плоскости (001) (рис. 3.5), чем способствует значительному измельчению структуры.
В жидком металле могут присутствовать и растворенные примеси, которые также вызывают измельчение структуры. Адсорбируясь на поверхности зарождающихся кристаллов, они уменьшают поверхностное натяжение на границе раздела жидкость — твердая фаза и линейную скорость роста кристаллов. Из формулы (3.4) следует, что это способствует
уменьшению AKp и появлению новых зародышей, способных к росту. Примеси, понижающие поверхностное натяжение, называют поверхностноактивными.
Измельчение структуры способствует улучшению механических свойств металла. На практике для измельчения структуры металлов и сплавов широко применяют технологическую операцию, называемую модифицированием. Она состоит во введении в жидкий сплав перед разливкой специальных добавок — модификаторов. В качестве последних используют поверхностно-активные вещества (например, бор в сталях, натрий в алюминии и его сплавах), а также элементы, образующие тугоплавкие тонкодисперсные частицы (например, титан, цирконий в алюминии и его сплавах; алюминий, титан в сталях). Модификаторы добавляют в сплавы в количествах от тысячных до десятых долей процента.
При увеличении температуры жидкого металла примеси, играющие роль дополнительных центров кристаллизации, растворяются или дезактивируются, поэтому повышение температуры жидкого металла перед разливкой приводит к укрупнению зерна при кристаллизации. Наоборот, подстуживание металла перед разливкой до температур, незначительно превышающих температуру плавления металла, способствует уменьшению размера зерна. Подстуживание эффективно при наличии примесей (или модификаторов), образующих фазы со структурным и размерным соответствием с основным металлом; в этом случае даже после значительных перегревов можно получить мелкое зерно, особенно если удлинить выдержку перед разливкой.
ФОРМА КРИСТАЛЛОВ И СТРОЕНИЕ СЛИТКОВ
Форма и размер зерен, образующихся при кристаллизации, зависят от условий их роста, главным образом от скорости и направления отвода теплоты и температуры жидкого металла, а также от содержания примесей.
Рост зерна происходит по дендритной (древовидной) схеме (рис. 3.6). Установлено, что максимальная скорость роста кристаллов наблюдается по таким плоскостям и направлениям, которые имеют наибольшую плотность упаковки атомов. В результате вырастают длинные ветви, которые называются осями первого порядка. По мере роста на осях первого порядка появляются и начинают расти ветви второго порядка, от которых ответвляются оси третьего порядка и т.д. В последнюю очередь идет кристаллизация в участках между осями дендритов.
Дендриты растут до тех пор, пока не соприкоснутся между собой. После этого окончательно заполняются межосные пространства, и дендриты превращаются в полновесные кристаллы с неправильной внешней огранкой. Такие кристаллы называют зернами или кристаллитами. При недостатке жидкого металла для заполнения межосных пространств (например, на открытой поверхности слитка или в усадочной раковине) кристалл сохраняет дендритную форму. Такой дендрит обнаружен Д.К. Черновым на поверхности усадочной раковины стального слитка массой 100 т. На
границах между зернами в участках между осями дендритов накапливаются примеси, появляются поры из-за усадки и трудностей подхода жидкого металла к фронту кристаллизации.
Условия отвода теплоты при кристаллизации значительно влияют на форму зерен. Кристаллы растут преимущественно в направлении, обратном отводу теплоты. Поэтому при направленном теплоотводе образуются вытянутые (столбчатые) кристаллы. Если теплота от растущего кристалла отводится во всех трех направлениях с приблизительно одинаковой скоростью, формируются равноосные кристаллы.
Структура слитка зависит от многих факторов, основные из которых следующие: количество и свойства примесей в чистом металле или легирующих элементов в сплаве, температура разливки, скорость охлаждения при кристаллизации, а также конфигурация, температура, теплопроводность, состояние внутренней поверхности литейной формы. На рис. 3.7 приведены схемы макроструктур слитков, полученных в простой вертикальной металлической форме.
Типичная структура слитка сплавов состоит из трех зон (см. рис. 3.7, а). Жидкий металл прежде всего переохлаждается в местах соприкосновения с холодными стенками формы. Большая степень переохлаждения способствует образованию на поверхности слитка зоны 1 мелких равноосных кристаллов. Отсутствие направленного роста кристаллов этой зоны объясняется их случайной ориентацией, которая является причиной столкновения кристаллов и прекращения их роста. Ориентация кристаллов, в свою очередь, зависит от состояния поверхности формы (шероховатость, адсорбированные газы, влага) и наличия в жидком металле оксидов, неметаллических включений. Эта зона очень тонка и не всегда различима невооруженным глазом. Затем происходит преимущественный рост кристаллов, наиболее благоприятно ориентированных по отношению к теплоотводу. Так образуется зона 2 столбчатых кристаллов, расположенных нормально к стенкам формы. Наконец, в середине слитка, где наблюдается наименьшая степень переохлаждения и не ощущается направленного отвода теплоты, образуются равноосные кристаллы больших размеров (зона 3).
Применяя различные технологические приемы, можно изменить количественное соотношение зон или исключить из структуры слитка какую-либо зону вообще. Например, перегрев сплавов перед разливкой и быстрое охлаждение при кристаллизации приводят к формированию структуры, состоящей практически из одних столбчатых кристаллов (рис. 3.7, 6). Такая структура называется транскристаллической. Подобную структуру имеют слитки очень чистых металлов. Зона столбчатых кристаллов характеризуется наибольшей плотностью, но в месте стыка столбчатых кристаллов собираются нерастворимые примеси, и слитки с транскристаллической структурой часто растрескиваются при обработке давлением. Транскристаллическая структура, образовываясь в сварных швах, уменьшает их прочность.
Низкая температура разливки сплавов, продувка жидкого металла инертными газами, вибрация, модифицирование приводят к уменьшению и даже исчезновению зоны столбчатых кристаллов и получению слитков со структурой, состоящей из равноосных кристаллов (см. рис. 3.7, е).
В верхней части слитка, которая затвердевает в последнюю очередь, концентрируется усадочная раковина. Под усадочной раковиной металл получается рыхлым, в нем содержится много усадочных пор. Часть слитка с усадочной раковиной и рыхлым металлом отрезают.
Наконец, качественная структура формируется при непрерывной разливке. В этом случае жидкий металл поступает из печи через специальное устройство непосредственно в водоохлаждаемый кристаллизатор, а затвердевший металл непрерывно вытягивается с противоположного конца кристаллизатора. При этом литой металл отличается высокой пластичностью и мелкозернистой структурой, приближаясь по качеству к деформированному металлу. Применение этого способа разливки позволяет автоматизировать и механизировать технологический процесс, сократить производственные площади, полностью исключить применение изложниц,