ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 27.04.2019
Просмотров: 4187
Скачиваний: 11
Для достижения достаточной точности построение должно быть выполнено в крупном масштабе, при котором возможна достоверность определения размеров паза с точностью до 0,1 мм, например 10:1 или 5:1.
Рис. 9.30. К графоаналитическому методу определения размеров паза статора
Для расчета коэффициента заполнения паза необходимо определить площадь паза “в свету” и учесть площадь поперечного сечения паза, занимаемую корпусной изоляцией Sиз и прокладками в пазу Sпр. Размеры паза “в свету” определяют с учетом припусков на шихтовку сердечников Δbп и Δhп :
(9.42)
где Δbп и Δhп — см. табл. 9.14.
Площадь поперечного сечения трапецеидального паза, в которой размещаются обмотка, корпусная изоляция и прокладки, м2,
(9.43)
где
h'п.к = h'п – (hш + hк) (9.44)
высота клиновой части паза hк = (b1 – bш) tg β/ 2, т. е.
(9.45)
Площадь, занимаемая корпусной изоляцией в пазу, м2,
Sиз = bиз(2hп + b1 + b2), (9.46)
где bиз — односторонняя толщина изоляции в пазу, м (см. гл. 3).
Площадь, занимаемая прокладками в пазу (на дне паза, под клином и между слоями обмотки в двухслойной обмотке), м2,
для двигателей с h = 180... 250 мм
Sпр = (0,9 b1 + 0,4 b2)10-3;
(9.47)
для двигателей с h ≥ 280 мм
Sпр = 0,6 (b1 + b2) 10-3
При отсутствии прокладок в пазу Snp = 0.
Площадь поперечного сечения паза, остающаяся свободной для размещения проводников обмотки,
(9.48)
Контролем правильности размещения обмотки в пазах является значение коэффициента заполнения паза:
kз = (d2из uп nэл) / S'п
(см. § 3.4), который должен находиться в пределах kз = 0,69. ..0, 71 для двигателей с 2р = 2 и kз = 0,72. ..0,74 для двигателей с 2р ≥ 4.
Еcли полученное значение ниже указанных пределов, то площадь паза следует уменьшить за счет увеличения ha или bz, или обоих размеров одновременно в зависимости от принятого при их расчете значения индукции. Индукция в зубцах и ярме статора при этом уменьшится. Уменьшение индукции ниже пределов, указанных в табл. 9.12, показывает, что главные размеры двигателя завышены и активная сталь недоиспользована. В этом случае следует уменьшить длину сердечника или перейти на ближайшую меньшую высоту оси вращения.
Часто расчет показывает, что значение kз оказывается выше указанных пределов. Это недопустимо, так как при чрезмерно высоких kз проводники обмотки во время укладки приходится очень сильно уплотнять в пазах. Их изоляция может быть повреждена или, по меньшей мере, ослаблена, что вызовет резкое уменьшение надежности обмотки. Для уменьшения kз надо, взяв предельно допустимые значения Bz и Ва (см. табл. 9.12), пересчитать размеры bz и ha. К уменьшению kз приводит также уменьшение числа элементарных проводников nэл, которое возможно при одновременном пропорциональном увеличении площади поперечного сечения qэл или уменьшении числа параллельных ветвей обмотки с тем, чтобы плотность тока осталась неизменной. Если и при этом значение kз остается выше допустимого, следует сделать вывод, что принятые главные размеры двигателя занижены. Необходимо просчитать другой вариант, увеличив l или перейдя на большую высоту оси вращения.
Таблица 9. 17. Расчетные размеры зубцов статоров при
трапецеидальных или грушевидных пазах в
машинах с обмоткой из круглого провода
Размер |
Рис. 9.29, а |
Рис. 9.29, б |
Рис. 9.29, в |
|
|
|
|
|
|
|
|
|
|
|
- 0,1 b2 |
После уточнения размеров паза ширину зубца и расчетную высоту паза определяют по формулам табл. 9.17. Обычно при всыпной обмотке bz = b'z = b"z. В некоторых случаях возможно некоторое расхождение значений b'z и b"z, поэтому рекомендуется рассчитать оба
значения b'z и b"z и при небольшом расхождении результатов взять среднюю расчетную ширину зубца: bz = (b'z + b''z)/ 2. При больших расхождениях следует изменить соотношения размеров пазов.
9.7. ВЫБОР ВОЗДУШНОГО ЗАЗОРА
Правильный выбор воздушного зазора во многом определяет энергетические показатели асинхронного двигателя. Чем меньше воздушный зазор, тем меньше его магнитное сопротивление и магнитное напряжение, составляющее основную часть МДС магнитной цепи всей машины. Поэтому уменьшение зазора приводит к соответственному уменьшению МДС магнитной цепи и намагничивающие тока двигателя, благодаря чему возрастает его cos φ и уменьшаются потери в меди обмотки статора. Но чрезмерное уменьшение приводит к возрастанию амплитуды пульсаций индукции в воздушном зазоре и, как следствие этого, к увеличению поверхностных и пульсационных потерь. Поэтому КПД двигателей с очень малыми и зазорами не улучшается, а часто даже становится меньше.
В современных асинхронных двигателях зазор выбирают, исходя из минимума суммарных потерь. Так как при увеличении зазора потери в меди возрастают, а поверхностные и пульсационные уменьшаются, то существует оптимальное соотношение между параметрами, при котором сумма потерь будет наименьшей. Такие расчеты проводят на ЭВМ по оптимизационным программам. При учебном проектировании воздушный зазор следует выбирать, руководствуясь данными выпускаемых двигателей (рис. 9.31) либо следующими приближенными формулами.
Для двигателей мощностью менее 20 кВт воздушный зазор, м, равен при 2р - 2
δ ≈ (0,3 + 1,5D) 10-3; (9.49)
при 2р > 4
δ ≈ (0,25 + D) 10-3. (9.50)
Для двигателей средней и большой мощности
δ ≈ (9.51)
Поверхностные и пульсационные потери в двигателях зависят не только от амплитуд, но и от частоты пульсаций индукции в воздушном зазоре. В быстроходных двигателях частота пульсаций больше, чем в тихоходных, так как она пропорциональна частоте вращения.
Рис. 9.31. К выбору воздушного зазора асинхронных двигателей
Для уменьшения этого вида потерь 8 в быстроходных двигателях выполняют большим, что уменьшает амплитуду пульсаций.
В статорах высоковольтных машин применяют только открытые пазы, и при малых зазорах это может привести к большим пульсациям индукции, поэтому воздушный зазор в них выполняют большим, обычно равным 1,5...2 мм.
Воздушный зазор, полученный по эмпирическим формулам или из графиков, следует округлять до 0,05 мм при δ < 0,5 мм и до 0,1 мм при δ > 0,5 мм. Например, зазор выбирают равным 0,35; 0,4; 0,45; 0,5; 0,6 мм и т. д.
Выбранный по приведенным рекомендациям воздушный зазор обычно превышает минимально допустимый по механическим условиям. Однако все же необходимо провести механический расчет вала проектируемого двигателя. Прогиб вала не должен быть больше 10 % воздушного зазора.
9.8. РАСЧЕТ РОТОРА
9.8.1. Фазные роторы
Для нормальной работы асинхронного двигателя необходимо, чтобы фазная обмотка ротора имела столько же фаз и столько же полюсов, сколько их имеет обмотка статора, т. е. m2 = m1 и р2 = р1.
Число пазов ротора Z2 должно отличаться от числа пазов статора. При расчете задаются обычно числом пазов на полюс и фазу ротора q2 = q1 ± К, тогда Z2 = Z1 q2/q1. В большинстве случаев К = 1 или К = 1/2. При характерном для обмоток статора асинхронных двигателей целом q1 обмотка ротора имеет целое или дробное число q2 со знаменателем дробности, равным 2. Обмотки ротора со знаменателем дробности, большим двух, встречаются редко (в основном в крупных многополюсных машинах).
Число витков в фазе обмотки ротора выбирают исходя из допустимого напряжения на контактных кольцах при пуске двигателя. ЭДС фазы обмотки ротора Е2 определяется магнитным потоком, который при постоянном уровне индукции в воздушном зазоре растет с увеличением габаритов двигателя. Поэтому в крупных машинах напряжение на контактных кольцах может достигнуть слишком большого значения и привести к перекрытию или пробою изоляции колец.
Чтобы Е2 не достигала опасного значения, обмотку роторов крупных машин выполняют с малым числом витков в фазе. В современных асинхронных двигателях наиболее распространенной обмоткой такого типа является двухслойная стержневая обмотка, при которой в пазу размещаются только два эффективных проводника. Для уменьшения количества межгрупповых соединений она выполняется волновой.
В отдельных машинах можно встретить и однослойную стержневую обмотку ротора. Она применяется как исключение в крупных машинах специального исполнения, так как требует сложной в технологическом отношении конструкции лобовых частей стержней.
В небольших по габаритам машинах опасности чрезмерного увеличения Е2 нет, так как поток в них невелик, и число витков в фазе обмотки ротора увеличивают, чтобы снизить ток через щеточные контакты, что особенно важно в двигателях с постоянно прилегающими к контактным кольцам щетками. Такие обмотки выполняют из многовитковых катушек. Описание конструкции и схем обмоток фазных роторов дано в гл. 3.
Расчет обмотки фазного ротора проводят в следующей последовательности.
Для определения числа витков в фазе роторов с катушечной обмоткой предварительно задаются ЭДС фазы Е2, при которой напряжение на контактных кольцах (Uк.к) в момент пуска двигателя приблизительно равно линейному номинальному напряжению двигателя. Обмотки роторов в большинстве случаев соединяют в звезду
при этом Uк.к = E2 = 150...250 В. Если обмотку ротора соединяют в треугольник, то Uк.к = Е2.
Число витков в фазе
Так как Е2 выбрана приближенно и может быть несколько изменена, то, принимая отношение обмоточных коэффициентов kоб1/kоб2 = 1 и kE = 1 и учитывая, что при s = 1 отношение f1 / f2 = 1, получаем
w2 = (9.52)
Число эффективных проводников в пазу
Uп2 = (9.53)
должно быть целым и при двухслойной обмотке четным, поэтому полученное значение округляют, после чего уточняют число витков в
фазе:
w2 = uп p2 q2. (9.54)
В роторах с двухслойной стержневой обмоткой uп2 всегда равно двум, поэтому w2 определяют без предварительного выбора Е2:
w2 = 2 p2 q2 = Z2 /m2. (9.55)
После расчета w2 необходимо проверить напряжение на контактных кольцах ротора:
U к.к. = U1ном (9.56)
В двигателях со стержневой обмоткой ротора Uк.к обычно не превышает 800... 1000 В, но при расчете двигателей мощностью 1000 кВт и более могут быть получены значения Uк.к более 1500... 2000 В. Для снижения Uк.к в обмотке ротора иногда выполняют две параллельные ветви. При этом необходимо помнить, что стержневая волновая обмотка с а = 2 может быть выполнена симметричной только при целом числе q2.
Предварительное значение тока в обмотке фазного ротора, А,
I2 =ki I1 vi, (9.57)
где ki — коэффициент, учитывающий влияние тока намагничивания на отношение I1 / I2. Его приближенное значение может быть рассчитано в зависимости от номинального cos φ, которым задавались в начале расчета:
ki = 0,2 + 0,8 cos φ, (9.58)
vi — коэффициент приведения токов, для двигателей с фазными роторами
. (9.59)
Сечение эффективных проводников обмотки ротора, м2,
qэф2 = I2 / J2, (9.60)
и при стержневой обмотке qc = qэф2. Здесь J2 — допустимая плотность тока, А/м2; в роторах с катушечной обмоткой при классах нагревостойкости изоляции В и F J2 = (5...6,5) • 106 А/м , а в более мощных двигателях со стержневой обмоткой J2 = (4,5...5,5) • 106 А/м2.
Эффективные проводники независимо от их размеров на элементарные не подразделяют, так как эффект вытеснения тока в обмотке роторов при номинальных режимах асинхронных двигателей из-за малой частоты (f2 = sf1) не проявляется.
Окончательные размеры проводников обмотки ротора определяют по таблицам приложения 3 одновременно с расчетом размеров пазов.
В фазных роторах с катушечной обмоткой выполняют прямоугольные открытые пазы, при стержневой обмотке — прямоугольные полузакрытые пазы с узким шлицем (рис. 9.32). Ширину паза выбирают исходя из соотношения (0,4...0,45)tz2. Примеры вычисления изоляции обмоток фазных роторов приведены в табл. 3.10 и 3.11.
При расчете заполнения паза проводниками с изоляцией следует учитывать припуск на сборку магнитопровода (см. табл. 9.14). Высоту клиновой части паза при расчете расположения проводников не учитывают. В двигателях с h = 280...355 мм выполняют hк = 2,5 мм и hк = 3,5 мм при h = 400 мм. Ширину шлица обычно принимают равной bш = 1,5 мм, а высоту hш = 1,0 мм.
После предварительных расчетов необходимо уточнить размер зубца ротора в наиболее узком сечении bz2min и проверить соответствие индукции Вz2max ее допустимому значению для данного исполнения двигателя по табл. 9.12:
bz2min = ; (9.61)
Вz2max = (9.62)
Рис. 9.32. Пазы фазного ротора асинхронного двигателя:
а — открытые (катушечная обмотка);
б — полузакрытые (стержневая обмотка)
Наибольшая ширина зубца ротора с открытыми пазами (рис. 9.32, а)
bz2max = ; (9.63)
Наибольшая ширина зубца ротора с полузакрытыми пазами (рис. 9.32, 6)
bz2max = (9.64)
Расчетная высота зубцов при пазах обеих конфигураций принимается равной высоте паза.
9.8.2. Короткозамкнутые роторы
Короткозамкнутые обмотки роторов асинхронных двигателей делятся по конструкции и технологии изготовления на два типа: сварные и литые.
В сварных конструкциях (рис. 9.33 и 9.34) стержни обмотки устанавливают в пазы, после чего с торцов ротора их замыкают, приваривая или припаивая замыкающие кольца. При литых конструкциях одновременно заливают как одно целое и стержни, и замыкающие кольца. На
Рис. 9.33. Короткозамкнутый ротор Рис. 9.34. Короткозамкнутая обмотка
асинхронного двигателя со сварной асинхронного двигателя:
обмоткой: 1 — замыкающие кольца; 1 — замыкающие кольца;
2 — стержни обмотки 2 — стержни обмотки
замыкающих кольцах отливают также вентиляционные лопатки, выполняющие роль вентилятора при работе машины (см. рис. 3.10).
Короткозамкнутые обмотки роторов, в отличие от всех других существующих обмоток, не имеют определенного числа фаз и числа полюсов. Один и тот же ротор может работать в машинах, статоры которых выполнены на различные числа полюсов. Это, в частности, определило возможность использования короткозамкнутых роторов в двигателях с регулированием частоты вращения путем переключения числа полюсов обмотки статора.
Обычно принято считать, что каждый стержень обмотки образует одну фазу короткозамкнутой обмотки. Тогда число ее фаз равно числу пазов (m2 = Z2) и обмотка каждой из фаз имеет 1/2 витка, т. е. w2 = 1/2, так как при m2 = Z2 к каждой фазе относится один стержень с двумя участками замыкающих колец, расположенных с разных торцов ротора (рис. 9.35). Обмоточный коэффициент такой обмотки равен единице, а условное число пазов на полюс и фазу
q2 = . (9.65)
Рис. 9.35. Фазы обмотки короткозамкнутого ротора
При проектировании зубцовой зоны короткозамкнутых роторов особое внимание следует уделять выбору числа пазов ротора. Это объясняется тем, что в поле воздушного зазора машины кроме основной присутствует целый спектр гармоник более высокого порядка, каждая из которых наводит ЭДС в обмотке ротора, поэтому ток в стержнях обмотки имеет сложный гармонический состав.