Файл: Сборник контрольных заданий для студентов специалистов.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 709

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Вариант 1

Вариант 4

Вариант 5

Вариант 6

Вариант 2

Вариант 6

Вариант 7

Вариант 8

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Вариант 9

Вариант 10

2.2. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ ЭЛЕКТРОМАГНЕТИЗМА

Контрольное задание №4

Вариант 1

Вариант 9 По двум бесконечно длинным прямым параллельным проводам в противоположные стороны идут токи силой 10 А. Расстояние между проводами равно 5 см. Определить магнитную индукцию в точке, удаленной на 2 см от одного и на 3 см от другого провода. Найти величину магнитного потока между полюсами электромагнита, если площадь каждого полюса 10-2м2, а плоские поверхности их параллельны друг другу. Напряженность поля 36104А/м. Поле однородно. Прямой проводник длиной 20 см, по которому идет ток силой 10 А, помещен в магнитное поле под углом 30 к его направлению. Индукция магнитного поля равна 5 Тл. Найти напряженность поля и силу, действующую на проводник. В однородном магнитном поле, индукция которого 1,5 Тл, равномерно движется прямой проводник длиной 25 см. Сила тока в проводнике 2,5 А. Скорость движения проводника 20 см/с, направлена перпендикулярно вектору индукции. Найти работу, затрачиваемую на перемещение проводника в течение 5 с. Виток диаметром 8 см находится в однородном магнитном поле с напряженностью 6103 А/м. Плоскость витка перпендикулярна линиям индукции поля. Какую работу надо совершить, чтобы повернуть виток относительно его диаметра на угол 45o при силе тока в 4 А? Электрон движется в однородном магнитном поле с индукцией 10 мТл по винтовой линии, радиус которой 1,5 см, а шаг 10 см. Определить период обращения электрона и его скорость. Соленоид сечением 5 см2 содержит 1200 витков. Индукция магнитного поля внутри соленоида при силе тока 2 А равна 0,01 Тл. Определить индуктивность соленоида. Напряженность магнитного поля соленоида 1,6103 А/м; длина соленоида 100 см; площадь сечения 5 см2. Соленоид не имеет сердечника. Определить энергию и плотность энергии поля. Какое сечение должен иметь соленоид длиной 30 см с железным сердечником, чтобы при силе тока 0,3 А энергия магнитного поля в нем была равна 0,4 Дж, если в обмотке соленоида – 3500 витков (воспользоваться графиком В=f (Н), см. прил. 2)? Соленоид содержит 800 витков. Площадь сечения сердечника 10 см2. По обмотке идет ток, создающий поле с индукцией 8 мТл. Определить среднее значение ЭДС самоиндукции, которая возникает на зажимах соленоида, если сила тока уменьшится до нуля за время 0,8 мс. Рамка, содержащая 200 витков, может вращаться относительно оси, лежащей в её плоскости. Площадь рамки 5 см2. Ось рамки перпендикулярна линиям индукции однородного магнитного поля, величина которого равна 0,05 Тл. Определить максимальную ЭДС, которая индуцируется в рамке при ее вращении с частотой 40 с-1. Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи силой 10 А и 15 А, идущие в одном направлении, и ток силой 20 А, направленный в противоположную сторону. Вариант 10 По проводнику, согнутому в виде прямоугольника с длиной сторон 8 и 12 см, идет ток силой 5 А. Определить индукцию магнитного поля в точке пересечения диагоналей прямоугольника. В однородном магнитном поле, индукция которого равна 2 Тл, а направление горизонтальное, вертикально вверх движется прямой проводник массой 2 кг, по которому идет ток силой 4 А. Через 3 с после начала движения проводник имеет скорость 10 м/с. Определить его длину. Магнитный поток сквозь сечение соленоида равен 50 мкВб. Длина соленоида 50 см. Найти магнитный момент соленоида, если его витки плотно прилегают друг к другу. Виток, по которому течет ток силой 20 А, свободно установился в однородном магнитном поле с индукцией 0,016 Тл. Диаметр витка равен 10 см. определить работу, которую нужно совершить, чтобы повернут виток на угол /2 относительно оси, совпадающей с диаметром. Заряженная частица с энергией 103 эВ движется в однородном магнитном поле по окружности радиусом 1 мм. Определить силу, действующую на частицу со стороны поля. По соленоиду идет ток силой 2 А. Магнитный поток, пронизывающий поперечное сечение соленоида, равен 410-6 Вб. Определить индуктивность соленоида, если он имеет 800 витков. Индуктивность соленоида с немагнитным сердечником равна 0,16 мГн. Длина соленоида 1 м, площадь сечения 1 см2. Сколько витков на каждый сантиметр длины содержит обмотка соленоида? Определить индуктивность соленоида с железным сердечником и энергию магнитного поля в нем при силе тока 0,6 А, если площадь сечения соленоида 10 см2, число витков 103, а его длина 20 см, (воспользоваться графиком В=f(Н), см. прил. 2). Ток в соленоиде изменяется по закону I=Аt–Вt2, где А=10 А/с; В=1 А/с2. Определить ЭДС самоиндукции в соленоиде через 2 с. Длина соленоида 50 см, площадь сечения – 2 см2. Диаметр провода однослойной обмотки – 2 мм. Квадратная рамка с длиной стороны 15 см, содержащая 150 витков, вращается в однородном магнитном поле вокруг оси, перпендикулярной полю. Определить индукцию магнитного поля, если рамка делает 10 оборотов в секунду, а максимальная ЭДС индукции в рамке равна 10 В. Обмотка тороида с немагнитным сердечником содержит 10 витков на каждый сантиметр длины. Определить силу тока, если плотность энергии магнитного поля равна 0,8 Дж/м3. Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи силой 10 А; 14 А; 20 А, идущие в одном направлении, и ток силой 44 А, направленный в противоположную сторону. ЧАСТЬ 3. ОПТИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКАЗадачи, приведенные в контрольных работах, соответствуют программе общего курса физики в техническом вузе и охватывают разделы «Волновая оптика», «Тепловое излучение», «Атомная физика» и «Ядерная физика».В работе отсутствуют сведения, которые при необходимости могут быть найдены в учебных пособиях по курсу общей физики (см. библиографический список). Поэтому вначале помещен краткий перечень формул и законов, необходимых для решения задач.В приложении приведены основные справочные данные, дополняющие условия задач. Номера вариантов, которые должен выполнить студент, указывает преподаватель.3.1. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ ОПТИКИ3.1.1. Волновая оптикаАбсолютный показатель преломления среды: ,где и - скорости электромагнитных волн (света) в вакууме и среде. Закон преломления света на границе раздела двух сред с абсолютными показателями преломления и : ,где - угол падения, - угол преломления луча света; - относительный показатель преломления двух сред.Полное отражение наблюдается при падении света из среды оптически более плотной ( ) в среду оптически менее плотную ( ), т.е. при > . В этом случае угол преломления и :и ,где - предельный угол полного отражения света; при угле падения > свет полностью отражается от границы раздела сред. Формула тонкой собирающей линзы: ,где - фокусное расстояние линзы; - расстояние от предмета до оптического центра линзы; - расстояние от оптического центра линзы до изображения предмета. Для тонкой рассеивающей линзы расстояния и считаются отрицательными. Оптическая сила линзы: . Оптическая длина пути световой волны: ,где - геометрический путь световой волны; - абсолютный показатель преломления среды.Оптическая разность хода двух когерентных световых волн: ,где и - оптические пути световых волн в первой и во второй средах. Разность фаз колебаний векторов напряженностей электрического поля (световых векторов) двух когерентных световых волн: ,где - длина этих волн в вакууме. Условия максимумов интенсивности света при интерференции:и , где Условия минимумов интенсивности света при интерференции: и , где Координаты максимумов и минимумов интенсивностей света в интерференционной картине, полученной от двух когерентных источников: и ,где - расстояние от источников света до экрана; - расстояние между источниками света; Ширина интерференционной полосы: . Оптическая разность хода двух световых волн, отраженных от верхней и нижней поверхностей плоскопараллельной тонкой пленки, находящейся в воздухе с абсолютным показателем преломления :,где - толщина пленки; - абсолютный показатель преломления пленки; - длина световых волн в воздухе (вакууме); и - углы, соответственно, падения и преломления света. Второе слагаемое в этих формулах учитывает увеличение оптической длины пути световой волны на при отражении ее от среды оптически более плотной ( > ). Радиусы светлых колец Ньютона в отраженном свете (темных колец в проходящем свете):при и радиусы темных колец Ньютона в отраженном свете (светлых колец в проходящем свете):при где - радиус кривизны линзы; - длина световой волны в воздухе (вакууме), находящемся между линзой и стеклянной пластинкой. Радиусы зон Френеля, построенных на сферической волновой поверхности:при , где - радиус сферической волновой поверхности точечного источника света; - расстояние от волновой поверхности до точки наблюдения; - длина световой волны в данной среде.Дифракция Фраунгофера на одной щели: а) условие максимумов интенсивности света ; б) условие минимумов интенсивности света ,где - ширина щели; - угол дифракции, определяющий направление максимума или минимума интенсивности света; - длина световой волны в данной среде; При падении параллельного пучка света на щель под углом условие дифракционных максимумов имеет вид: .Дифракция Фраунгофера на дифракционной решетке:а) условие главных минимумов интенсивности света при ;б) условие дополнительных минимумов интенсивности света при ( );в) условие главных максимумов интенсивности света при ,где - ширина одной щели; - постоянная решетки; - общее число щелей; - угол дифракции, определяющий направление максимума или минимума интенсивности света; - длина световой волны в данной среде; - порядок спектра.При падении параллельного пучка света на дифракционную решетку под углом условие главных максимумов имеет вид: .Разрешающая способность дифракционной решетки: ,где и - длины двух световых волн, еще разрешаемых решеткой по критерию Рэлея; - общее число щелей; - порядок спектра.При дифракции рентгеновских лучей на кристаллической решетке направления максимальных интенсивностей этих лучей определяются по формуле Вульфа-Брэггов: при ,где - расстояние между параллельными кристаллографическими плоскостями; - длина волн рентгеновских лучей; - угол скольжения рентгеновских лучей. 3.1.2. Поляризация светаИнтенсивность света численно равна энергии, переносимой электро-магнитными волнами за единицу времени через единичную площадку, перпендикулярную направлению распространения этих волн. Интенсивность электромагнитной волны пропорциональна квадрату амплитуды вектора напряженности электрического поля (амплитуды светового вектора): .Интенсивность света, являющегося совокупностью электромагнитных волн: ,где и - интенсивность и амплитуда вектора напряженности электрического поля - той электромагнитной волны; и - проекции вектора напряженности электрического поля - той электромагнитной волны на взаимно перпендикулярные оси координат и ; - количество электромагнитных волн. В естественном свете:




Вариант 9


  1. Расстояние между двумя точечными зарядами в 1 мкКл и –1мкКл равно 10 см. Определить силу, действующую на точечный заряд, равный 0,1 мкКл и удаленный на 6 см от первого и на 8 см от второго заряда.

  2. Определить поток вектора напряженности электрического поля через сферическую поверхность, охватывающую точечные заряды в 5 нКл и –2 нКл.

  3. Два точечных заряда по 610-9 Кл и 1310-9 Кл находятся на расстоянии 40 см друг от друга. Какую работу надо совершить, чтобы сблизить их до расстояния 25 см?

  4. Диполь расположен в электрическом поле с напряженностью 104 В/м так, что его момент, равный 10-9 Клм, ориентирован по направлению поля. Найти работу, которую необходимо совершить, чтобы повернуть диполь на 180о.

  5. Плоский конденсатор состоит из двух круглых пластин радиусом 20 см каждая. Расстояние между пластинами 5 мм. Конденсатор присоединен к источнику напряжения в 300 В. Определить заряд и напряженность поля конденсатора, если диэлектриком будет: а) стекло; б) воздух.

  6. Плоский конденсатор с пластинами площадью 300 см2 каждая заряжен до разности потенциалов 1000 В. Расстояние между пластинами 4 мм. Диэлектрик – стекло. Определить энергию поля конденсатора и плотность энергии поля.

  7. Определить плотность тока в железном проводнике длиной 10 м, если провод находится под напряжением 6 В.

  8. Имеется предназначенный для измерения разности потенциалов до 30 В вольтметр с сопротивлением 2 кОм, шкала которого разделена на 150 делений. Какое сопротивление надо взять и как его включить, чтобы этим вольтметром можно было измерять разность потенциалов до 75 В ? Как изменится при этом цена деления вольтметра?

  9. При силе тока 3 А во внешней цепи батареи аккумуляторов выделяется мощность 18 Вт, при силе тока 1 А – соответственно 10 Вт. Определить ЭДС и внутреннее сопротивление батареи.

  10. Ток от магистрали к потребителю разводится по медным проводам, общая длина которых 49 м, а площадь 2,5 мм2. Напряжение в магистрали – 120 В. Потребителем является печь мощностью 600 Вт. Каково сопротивление печи?

  11. Сила тока в проводнике равномерно увеличивается от нуля до некоторого максимального значения в течение 10 с. За это время в нем выделилась теплота, равная 1 кДж. Определить скорость нарастания тока в проводнике, если сопротивление его 3 Ом.

  12. При включении электромотора в сеть с напряжением 120 В он потребляет ток 15 А. Найти мощность, потребляемую мотором, и его КПД, если сопротивление обмотки мотора 1 Ом.


Вариант 10


  1. Три одинаковых положительных заряда по 10-9 Кл каждый расположены по вершинам равностороннего треугольника. Какой отрицательный заряд нужно поместить в центре треугольника, чтобы сила притяжения с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?

  2. Два точечных заряда (210-7 Кл и 410-7 Кл) находятся в керосине на расстоянии 10 см друг от друга. Каковы напряженность электростатического поля и электрическое смещение в точке, находящейся на расстоянии 20 см от одного и 15 см от другого заряда?

  3. Пылинка массой 10-5 г, несущая на себе заряд 10-8 Кл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов 150 В пылинка имела скорость 20 м/с. Какова была скорость пылинки до того, как она влетела в поле?

  4. Две параллельные плоскости находятся на расстоянии 0,6 см друг от друга. По ним равномерно распределены заряды с поверхностными плотностями 0,2 мкКл/м2 и –0,3 мкКл/м2. Определить разность потенциалов между пластинами.

  5. Два конденсатора с электроемкостями, равными 3 мкФ и 6 мкФ, соединены между собой и присоединены к батарее с ЭДС, равной 120 В. Определить заряды конденсаторов и разности потенциалов между их обкладками, если конденсаторы соединены: а) параллельно; б) последовательно.

  6. Расстояние между пластинами плоского воздушного конденсатора площадью 50 см2 изменяется от 3 до 10 см. Конденсатор был заряжен до напряжения 200 В и отключен от источника тока. Найти величину изменения энергии поля конденсатора. Вычислить работу, необходимую для раздвижения его пластин.

  7. Определить число электронов, проходящих в одну секунду через единицу площади поперечного сечения железной проволоки длиной 10 м при напряжении на ее концах 6 В.

  8. Зашунтированный амперметр измеряет ток силой до 10 А. Какую наибольшую силу тока может измерить этот амперметр без шунта, если сопротивление амперметра равно 0,02 Ом, а сопротивление шунта 510-3 Ом?

  9. Сопротивление в 5 Ом, вольтметр и источник тока соединены параллельно. Вольтметр показывает напряжение 10 В. Если изменить сопротивление на 12 Ом, то вольтметр покажет напряжение 12 В. Определить ЭДС и внутреннее сопротивление источника тока. Током, идущим через вольтметр, пренебречь.

  10. Ток в проводнике сопротивлением 100 Ом равномерно нарастает от 0 до 10 А в течение 30 с. Определить количество теплоты, выделившееся за это время.

  11. Электродвижущая сила источника равна 300 В, сила тока короткого замыкания 2 А. Определить максимальное количество теплоты, которое может отдать источник тока в течение 1 с во внешнюю цепь.

  12. От батареи, ЭДС которой 500 В, требуется передать энергию на расстояние 2,5 км. Потребляемая мощность 10 кВт. Найти максимальные потери мощности в сети, если диаметр медных проводов 1,5 см.




2.2. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ ЭЛЕКТРОМАГНЕТИЗМА


2.2.1. Электромагнетизм

Вектор магнитной индукции: ,

где Гн/м – магнитная постоянная; - магнитная проницаемость среды; - вектор напряженности магнитного поля.

Магнитный момент рамки с током: ,

где - сила тока; - площадь рамки; - единичный вектор нормали к поверхности рамки; направление вектора связано с направлением тока, текущего по рамки, правилом правого винта.

Механический момент сил, действующих на рамку с током в магнитном поле:

,

модуль которого , где и ; - угол между векторами и .

Работа, совершаемая силами магнитного поля при вращении рамки с током:

,

где и - углы между векторами и , соответственно, в начальном и конечном положениях вектора .

Потенциальная энергия рамки с током в магнитном поле: ,

где - угол между векторами и .

Закон Био-Савара-Лапласа:

,

где - вектор магнитной индукции поля, созданного элементом проводника с током , в точке, положение которой определяется радиус-вектором , проведенным от указанного элемента проводника; направление вектора совпадает с направлением тока, текущего по проводнику; - модуль радиус-вектора.

Модуль вектора :

,

где - модуль элемента проводника; - угол между векторами и .

Согласно принципу суперпозиции, вектор магнитной индукции результирующего поля в данной точке равен векторной сумме магнитных индукций , созданных полей: .

При наложении двух магнитных полей модуль вектора магнитной индукции результирующего поля в данной точке:

,

где и - модули векторов магнитных индукций полей, созданных в данной точке; - угол между векторами и .

Модуль вектора магнитной индукции поля, создаваемого бесконечно длинным прямым проводником с током , в данной точке:

,

где - расстояние от данной точки до проводника с током.

Модуль вектора магнитной индукции поля, создаваемого отрезком прямого проводника с током :

,

где - расстояние от данной точки до прямой, проведенной вдоль проводника с током; и - углы между указанной прямой, направление которой определяется направлением тока, и радиус-векторами, проведенными из концов отрезка проводника в данную точку.

Модуль вектора магнитной индукции в центре кругового проводника с током :