Файл: Сборник контрольных заданий для студентов специалистов.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 723

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Вариант 1

Вариант 4

Вариант 5

Вариант 6

Вариант 2

Вариант 6

Вариант 7

Вариант 8

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Вариант 9

Вариант 10

2.2. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ ЭЛЕКТРОМАГНЕТИЗМА

Контрольное задание №4

Вариант 1

Вариант 9 По двум бесконечно длинным прямым параллельным проводам в противоположные стороны идут токи силой 10 А. Расстояние между проводами равно 5 см. Определить магнитную индукцию в точке, удаленной на 2 см от одного и на 3 см от другого провода. Найти величину магнитного потока между полюсами электромагнита, если площадь каждого полюса 10-2м2, а плоские поверхности их параллельны друг другу. Напряженность поля 36104А/м. Поле однородно. Прямой проводник длиной 20 см, по которому идет ток силой 10 А, помещен в магнитное поле под углом 30 к его направлению. Индукция магнитного поля равна 5 Тл. Найти напряженность поля и силу, действующую на проводник. В однородном магнитном поле, индукция которого 1,5 Тл, равномерно движется прямой проводник длиной 25 см. Сила тока в проводнике 2,5 А. Скорость движения проводника 20 см/с, направлена перпендикулярно вектору индукции. Найти работу, затрачиваемую на перемещение проводника в течение 5 с. Виток диаметром 8 см находится в однородном магнитном поле с напряженностью 6103 А/м. Плоскость витка перпендикулярна линиям индукции поля. Какую работу надо совершить, чтобы повернуть виток относительно его диаметра на угол 45o при силе тока в 4 А? Электрон движется в однородном магнитном поле с индукцией 10 мТл по винтовой линии, радиус которой 1,5 см, а шаг 10 см. Определить период обращения электрона и его скорость. Соленоид сечением 5 см2 содержит 1200 витков. Индукция магнитного поля внутри соленоида при силе тока 2 А равна 0,01 Тл. Определить индуктивность соленоида. Напряженность магнитного поля соленоида 1,6103 А/м; длина соленоида 100 см; площадь сечения 5 см2. Соленоид не имеет сердечника. Определить энергию и плотность энергии поля. Какое сечение должен иметь соленоид длиной 30 см с железным сердечником, чтобы при силе тока 0,3 А энергия магнитного поля в нем была равна 0,4 Дж, если в обмотке соленоида – 3500 витков (воспользоваться графиком В=f (Н), см. прил. 2)? Соленоид содержит 800 витков. Площадь сечения сердечника 10 см2. По обмотке идет ток, создающий поле с индукцией 8 мТл. Определить среднее значение ЭДС самоиндукции, которая возникает на зажимах соленоида, если сила тока уменьшится до нуля за время 0,8 мс. Рамка, содержащая 200 витков, может вращаться относительно оси, лежащей в её плоскости. Площадь рамки 5 см2. Ось рамки перпендикулярна линиям индукции однородного магнитного поля, величина которого равна 0,05 Тл. Определить максимальную ЭДС, которая индуцируется в рамке при ее вращении с частотой 40 с-1. Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи силой 10 А и 15 А, идущие в одном направлении, и ток силой 20 А, направленный в противоположную сторону. Вариант 10 По проводнику, согнутому в виде прямоугольника с длиной сторон 8 и 12 см, идет ток силой 5 А. Определить индукцию магнитного поля в точке пересечения диагоналей прямоугольника. В однородном магнитном поле, индукция которого равна 2 Тл, а направление горизонтальное, вертикально вверх движется прямой проводник массой 2 кг, по которому идет ток силой 4 А. Через 3 с после начала движения проводник имеет скорость 10 м/с. Определить его длину. Магнитный поток сквозь сечение соленоида равен 50 мкВб. Длина соленоида 50 см. Найти магнитный момент соленоида, если его витки плотно прилегают друг к другу. Виток, по которому течет ток силой 20 А, свободно установился в однородном магнитном поле с индукцией 0,016 Тл. Диаметр витка равен 10 см. определить работу, которую нужно совершить, чтобы повернут виток на угол /2 относительно оси, совпадающей с диаметром. Заряженная частица с энергией 103 эВ движется в однородном магнитном поле по окружности радиусом 1 мм. Определить силу, действующую на частицу со стороны поля. По соленоиду идет ток силой 2 А. Магнитный поток, пронизывающий поперечное сечение соленоида, равен 410-6 Вб. Определить индуктивность соленоида, если он имеет 800 витков. Индуктивность соленоида с немагнитным сердечником равна 0,16 мГн. Длина соленоида 1 м, площадь сечения 1 см2. Сколько витков на каждый сантиметр длины содержит обмотка соленоида? Определить индуктивность соленоида с железным сердечником и энергию магнитного поля в нем при силе тока 0,6 А, если площадь сечения соленоида 10 см2, число витков 103, а его длина 20 см, (воспользоваться графиком В=f(Н), см. прил. 2). Ток в соленоиде изменяется по закону I=Аt–Вt2, где А=10 А/с; В=1 А/с2. Определить ЭДС самоиндукции в соленоиде через 2 с. Длина соленоида 50 см, площадь сечения – 2 см2. Диаметр провода однослойной обмотки – 2 мм. Квадратная рамка с длиной стороны 15 см, содержащая 150 витков, вращается в однородном магнитном поле вокруг оси, перпендикулярной полю. Определить индукцию магнитного поля, если рамка делает 10 оборотов в секунду, а максимальная ЭДС индукции в рамке равна 10 В. Обмотка тороида с немагнитным сердечником содержит 10 витков на каждый сантиметр длины. Определить силу тока, если плотность энергии магнитного поля равна 0,8 Дж/м3. Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи силой 10 А; 14 А; 20 А, идущие в одном направлении, и ток силой 44 А, направленный в противоположную сторону. ЧАСТЬ 3. ОПТИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКАЗадачи, приведенные в контрольных работах, соответствуют программе общего курса физики в техническом вузе и охватывают разделы «Волновая оптика», «Тепловое излучение», «Атомная физика» и «Ядерная физика».В работе отсутствуют сведения, которые при необходимости могут быть найдены в учебных пособиях по курсу общей физики (см. библиографический список). Поэтому вначале помещен краткий перечень формул и законов, необходимых для решения задач.В приложении приведены основные справочные данные, дополняющие условия задач. Номера вариантов, которые должен выполнить студент, указывает преподаватель.3.1. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ ОПТИКИ3.1.1. Волновая оптикаАбсолютный показатель преломления среды: ,где и - скорости электромагнитных волн (света) в вакууме и среде. Закон преломления света на границе раздела двух сред с абсолютными показателями преломления и : ,где - угол падения, - угол преломления луча света; - относительный показатель преломления двух сред.Полное отражение наблюдается при падении света из среды оптически более плотной ( ) в среду оптически менее плотную ( ), т.е. при > . В этом случае угол преломления и :и ,где - предельный угол полного отражения света; при угле падения > свет полностью отражается от границы раздела сред. Формула тонкой собирающей линзы: ,где - фокусное расстояние линзы; - расстояние от предмета до оптического центра линзы; - расстояние от оптического центра линзы до изображения предмета. Для тонкой рассеивающей линзы расстояния и считаются отрицательными. Оптическая сила линзы: . Оптическая длина пути световой волны: ,где - геометрический путь световой волны; - абсолютный показатель преломления среды.Оптическая разность хода двух когерентных световых волн: ,где и - оптические пути световых волн в первой и во второй средах. Разность фаз колебаний векторов напряженностей электрического поля (световых векторов) двух когерентных световых волн: ,где - длина этих волн в вакууме. Условия максимумов интенсивности света при интерференции:и , где Условия минимумов интенсивности света при интерференции: и , где Координаты максимумов и минимумов интенсивностей света в интерференционной картине, полученной от двух когерентных источников: и ,где - расстояние от источников света до экрана; - расстояние между источниками света; Ширина интерференционной полосы: . Оптическая разность хода двух световых волн, отраженных от верхней и нижней поверхностей плоскопараллельной тонкой пленки, находящейся в воздухе с абсолютным показателем преломления :,где - толщина пленки; - абсолютный показатель преломления пленки; - длина световых волн в воздухе (вакууме); и - углы, соответственно, падения и преломления света. Второе слагаемое в этих формулах учитывает увеличение оптической длины пути световой волны на при отражении ее от среды оптически более плотной ( > ). Радиусы светлых колец Ньютона в отраженном свете (темных колец в проходящем свете):при и радиусы темных колец Ньютона в отраженном свете (светлых колец в проходящем свете):при где - радиус кривизны линзы; - длина световой волны в воздухе (вакууме), находящемся между линзой и стеклянной пластинкой. Радиусы зон Френеля, построенных на сферической волновой поверхности:при , где - радиус сферической волновой поверхности точечного источника света; - расстояние от волновой поверхности до точки наблюдения; - длина световой волны в данной среде.Дифракция Фраунгофера на одной щели: а) условие максимумов интенсивности света ; б) условие минимумов интенсивности света ,где - ширина щели; - угол дифракции, определяющий направление максимума или минимума интенсивности света; - длина световой волны в данной среде; При падении параллельного пучка света на щель под углом условие дифракционных максимумов имеет вид: .Дифракция Фраунгофера на дифракционной решетке:а) условие главных минимумов интенсивности света при ;б) условие дополнительных минимумов интенсивности света при ( );в) условие главных максимумов интенсивности света при ,где - ширина одной щели; - постоянная решетки; - общее число щелей; - угол дифракции, определяющий направление максимума или минимума интенсивности света; - длина световой волны в данной среде; - порядок спектра.При падении параллельного пучка света на дифракционную решетку под углом условие главных максимумов имеет вид: .Разрешающая способность дифракционной решетки: ,где и - длины двух световых волн, еще разрешаемых решеткой по критерию Рэлея; - общее число щелей; - порядок спектра.При дифракции рентгеновских лучей на кристаллической решетке направления максимальных интенсивностей этих лучей определяются по формуле Вульфа-Брэггов: при ,где - расстояние между параллельными кристаллографическими плоскостями; - длина волн рентгеновских лучей; - угол скольжения рентгеновских лучей. 3.1.2. Поляризация светаИнтенсивность света численно равна энергии, переносимой электро-магнитными волнами за единицу времени через единичную площадку, перпендикулярную направлению распространения этих волн. Интенсивность электромагнитной волны пропорциональна квадрату амплитуды вектора напряженности электрического поля (амплитуды светового вектора): .Интенсивность света, являющегося совокупностью электромагнитных волн: ,где и - интенсивность и амплитуда вектора напряженности электрического поля - той электромагнитной волны; и - проекции вектора напряженности электрического поля - той электромагнитной волны на взаимно перпендикулярные оси координат и ; - количество электромагнитных волн. В естественном свете:


Вариант 4

1. На пути одного из интерферирующих лучей помещается стеклянная пластинка толщиной h=12 мкм. Определить, на сколько полос сместится интерференционная картина, если показатель преломления стекла n=1,5, длина волны λ=750 нм и свет падает на пластинку нормально.

2. Плоская световая волна длиной λ0 в вакууме падает по нормали на прозрачную пластинку с показателем преломления n. При каких толщинах в пластинке отраженная волна будет иметь: а) максимальную; б) минимальную интенсивность?

3. Найти радиус второго светлого кольца Ньютона, если между линзой и пластинкой налит бензол (показатель преломления которого 1,6). Радиусы кривизны материала линзы и пластинки одинаковы и равны 1,5. Наблюдение ведется в проходящем свете с длиной волны 589 нм.

4. Плоская монохроматическая световая волна падает нормально на круглое отверстие. На расстоянии 9 м от него находится экран, где наблюдают дифракционную картину. Диаметр отверстия уменьшили в 3 раза. Определить новое расстояние, на котором надо поместить экран, чтобы получить на нём дифракционную картину, подобную той, что в предыдущем случае, но уменьшенную в 3 раза.

5. На щель нормально падает параллельный пучок монохроматического света. Длина волны падающего света укладывается в ширине щели 5 раз. Определить ширину нулевого максимума в дифракционной картине, проецируемой линзой на экран, отстоящий от линзы на расстоянии 1 м.

6. Сколько штрихов на каждый миллиметр содержит дифракционная решетка, если при наблюдении в монохроматическом свете (=0,6 мкм) максимум пятого порядка отклонен на угол 180?

7. Степень поляризации частично поляризованного света составляет 0,75. Определите отношение максимальной интенсивности света, пропускаемого анализатором, к минимальному.

8. Анализатор в 2 раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол между плоскостями пропускания поляризатора и анализатора. Потерями интенсивности света в анализаторе пренебречь.

9. Пластина кварца толщиной 2 мм, вырезанная перпендикулярно оптической оси кристалла, поворачивает плоскость поляризации монохроматического света определенной длины волны на угол 300. Определить толщину кварцевой пластинки, помещенной между параллельными николями, чтобы данный монохроматический свет гасился полностью.

Вариант 5

1. На пути световой волны, идущей в воздухе, поставили стеклянную пластинку толщиной h=1 мм. На сколько изменится оптическая длина пути, если волна падает на пластинку: а) нормально; б) под углом 300?

2. Стеклянная пластинка покрыта с обеих сторон пленкой прозрачного вещества. Для света с длиной волны в вакууме λ0=480 нм показатель преломления пластинки n2=1,44, показатель преломления пленки n1=1,2, показатель преломления воздуха n0=1. При какой минимальной толщине пленок свет указанной длины волны будет проходить через пластинку без потерь на отражение?

3. Плоско-выпуклая линза с радиусом сферической поверхности R=12,5 см прижата к стеклянной пластинке. Диаметр десятого темного кольца Ньютона в отраженном свете равен 1 мм. Найти длину волны света.

4. Фазовая зонная пластинка изготовлена из материала с показателями преломления n=1,5. Какой минимальной высоты h должны быть выступы над четными (или нечетными) зонами пластинки для длины волны 0=580 нм?

5. На щель падает нормально параллельный пучок монохроматического света с длиной волны . Ширина щели 6. Под каким углом будет наблюдаться 3-й дифракционный минимум света? 3-й дифракционный максимум?

6. На дифракционную решетку, содержащую 400 штрихов на 1 мм, падает нормально монохроматический свет (=0,6 мкм). Определить общее число дифракционных максимумов, которые даст эта решетка и угол дифракции, соответствующий последнему максимуму.

7. На николь падает частично поляризованный свет. При некотором положении николя интенсивность света, прошедшего через него, стала минимальной. Когда плоскость пропускания николя повернули на угол 450, интенсивность света возросла в 1,5 раза. Определить степень поляризации света.

8. Угол между плоскостями пропускания поляризатора и анализатора равен 450. Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличить до 600?

9. Определить массовую концентрацию сахарного раствора, если при прохождении света через трубку длиной =206 см с этим раствором плоскость поляризации света поворачивается на угол 100. Удельное вращение сахара равно 1,17·10-2 рад м2/кг (10=1,75·10-2 рад).
Вариант 6

1. В опыте Юнга вначале берется источник света с длиной волны λ1=600 нм, а затем λ2. Какова длина волны во втором случае, если 7-я светлая полоса в первом случае совпадает с 10-й темной во втором случае?

2. Найти минимальную толщину пленки с показателем преломления 1,33, при которой свет с длиной волны 0,64 мкм

испытывает максимальное отражение, а свет с длиной волны 0,4 мкм не отражается совсем. Угол падения равен 300.

3. Плоско-выпуклая линза с показателем преломления 1,6 выпуклой стороной лежит на стеклянной пластинке. Радиус третьего светлого кольца в отраженном свете (λ=0,6 мкм) равен 0,9 мм. Найти радиус кривизны линзы.

4. Радиус четвёртой зоны Френеля для плоского фронта равен 3 мм. Определить радиус шестой зоны Френеля.

5. На щель шириной 0,2 мм падает нормально монохроматический свет с длиной волны 0,64 мк. Определить угол отклонения лучей, соответствующих первой световой дифракционной полосе.

6. Дифракционная решетка содержит 200 штрихов на 1 мм. На решетку падает нормально монохроматический свет (=0,5 мкм). Максимум какого наибольшего порядка дает эта решетка?

7. Естественный свет пропускают через два одинаковых поставленных один за другим несовершенных поляризатора. Интенсивность прошедшего через эту систему света при параллельных плоскостях поляризаторов (Iн) превышает интенсивность при взаимно перпендикулярных плоскостях (I) в 9,53 раза. Определить степень поляризации, обуславливаемую системой при параллельных плоскостях поляризаторов.

8. Пучок естественного света падает на пластину из 6 николей, плоскость пропускания каждого из которых повернута на угол 300 относительно плоскости пропускания предыдущего николя. Какая часть светового потока проходит через эту систему?

9. Пучок естественного света падает на поляризованную поверхность стеклянной пластины, погруженной в жидкость. Отраженный от плоскости пучок света составляет угол 970 с падающим пучком. Определить показатель преломления жидкости, если отраженный свет полностью поляризован.
Вариант 7

1. Когерентные пучки, длина волны которых в вакууме 500 нм, приходят в некоторую точку с геометрической разностью хода 1 мкм. Определить, максимум или минимум наблюдается в этой точке, если пучки проходят в воздухе (nвозд=1), скипидаре (nск=1,5) и стекле (nст=1,75).

2. На тонкую прозрачную плоскопараллельную пластинку (n=1,5) под углом 500 падает белый свет. Определить толщину пленки, при которой она в проходящем свете будет казаться красной (λ=670 нм).


3. Плоско-выпуклая стеклянная линза с радиусом кривизны сферической поверхности R=12,5 см прижата к стеклянной пластинке. Диаметры для m-го и пятнадцатого темных колец Ньютона в отраженном свете равны d1=1 мм и d2=1,5 мм. Найти длину волны света.

4. Рассчитать площадь одной зоны Френеля для сферического фронта волны света, падающего нормально на круглое отверстие в непрозрачном экране.

5. На щель падает нормально параллельный пучок монохроматического света с длиной волны . Ширина щели 6. Под каким углом будет наблюдаться 3-й дифракционный минимум света?

6. Период дифракционной решетки d=0,005 мм. Определить число наблюдаемых главных максимумов в спектре дифракционной решетки, если: 1) 1=760 мкм; 2) 2=400 нм.

7. Естественный свет пропускают через два одинаковых поставленных один за другим несовершенных поляризатора. Интенсивность прошедшего через эту систему света при параллельных плоскостях поляризаторов (Iн) превышает интенсивность при взаимно перпендикулярных плоскостях (I) в 9,53 раза. Определить степень поляризации света, прошедшего только через один из поляризаторов.

8. Угол между плоскостями поляризатора и анализатора 600. Естественный свет, проходя через такую систему, ослабляется в 10 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения в поляроидах.

9. Пучок света, идущий в воздухе, падает на поверхность жидкости под углом 540. Определить угол преломления пучка, если отраженный луч полностью поляризован.
Вариант 8

1. На пути одного из лучей интерференционного рефрактометра поместили трубку, в которой создан вакуум, длиной 10 см. При заполнении трубки аммиаком интерференционная картина сместилась на 17 полос. Определить показатели преломления аммиака, если наблюдение производится в монохроматическом свете с длиной волны 589 нм.

2. На тонкую пленку (n=1,33) падает пучок белого света. Угол падения α=520. При какой толщине пленки зеркально отраженный свет будет наиболее сильно окрашен в желтый цвет (λ=0,6 мкм)?

3. Установка для получения колец Ньютона освещается монохроматическим светом. Наблюдение ведется в отраженном свете. Радиусы двух соседних темных колец равны соответственно 4 мм и 4,38 мм. Радиус кривизны линзы равен 6,4 м. Определить порядковые номера и длину волны падающего света.

4. Вычислить радиусы первых пяти зон Френеля, если расстояние от источника света до волновой поверхности равно 1 м. Расстояние от волновой поверхности до точки наблюдения равно 1 м, длина световой волны равна 510
-7 м.

5. Пятый минимум при освещении щели светом с длиной волны 500 нм наблюдается под углом 300. Какова ширина щели?

6. Свет с длиной волны 535 нм падает нормально на дифракционную решетку. Определить ее период, если одному из максимумов соответствует угол дифракции 350 и наибольший порядок спектра равен пяти.

7. На пути частично поляризованного света поместили николь. При повороте николя на угол 600 из положения, соответствующего максимальному пропусканию света, интенсивность прошедшего света уменьшилась в 3 раза. Найти степень поляризации света.

8. Чему равен угол между главными плоскостями двух николей, если после прохождения через них интенсивность лазерного луча уменьшилась в 3 раза?

9. Пучок естественного света, идущий в воде, отражается от грани алмаза (nал=2,42), погруженного в воду (пв=1,5). При каком угле падения отраженный луч полностью поляризован?
Вариант 9

1. На пути одного из интерферирующих лучей помещена тонкая стеклянная пластинка, вследствие чего центральная светлая полоса смещается в положение, первоначально занимаемое 6-й светлой полосой (не считая центральной). Луч падает на пластинку нормально. Показатель преломления пластинки 1,5, длина волны 550 нм. Какова толщина пластинки?

2. Какой должна быть толщина пластинки с показателем преломления 1,6, если с её введением на пути одного из интерферирующих лучей картина смещается на четыре полосы? Длина волны света λ=550 нм.

3. Установка для наблюдения колец Ньютона освещается монохроматическим светом с длиной волны равной 550 нм, падающим нормально. Определить толщину воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плоско-выпуклой линзой в том месте, где в отраженном свете наблюдается четвертое темное кольцо.

4. Точечный источник света с λ=500 нм помещен на расстоянии а=0,5 м перед непрозрачной преградой с отверстием радиусом r=0,5 мм. Определить расстояние bот преграды до точки, для которой число m открываемых зон Френеля будет равно: а) 1; б) 5.

5. Зеленый свет с длиной волны 500 нм падает на щель шириной 8 мкм. Определить, под какими углами наблюдается первый и второй минимум.

6. При нормальном падении света на дифракционную решетку угол дифракции для линии 1=0,65 мкм во втором порядке равен 450. Определить угол дифракции для линии 2=0,5 мкм в третьем порядке.