Файл: Е.Н. Грибанов Теория вероятностей и математическая статистика. Методические указания для студентов всех специальностей.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.06.2024
Просмотров: 265
Скачиваний: 0
|
|
|
|
|
|
|
34 |
|
|
|
|
10 |
|
|
|
|
|
|
|||||
p{ |
X |
|
≤10}= 2Ф |
|
|
|
= 2Ф(2)≈ 0,9544. Следовательно, процент |
|
5 |
||||||
|
|
|
|
годных деталей, изготавливаемых автоматом, равен 95,44%.
22. Биномиальное распределение Биномиальным является распределение вероятностей появ-
ления m числа событий в п независимых испытаниях, в каждом из которых вероятность появления события постоянна и равна р. Вероятность возможного числа появлений события вычисляется по
формуле Бернулли: p{X = k}= Cnk pk qn−k |
(m = 0,1,K,n), |
где q =1− p . Постоянные п и р, входящие в это выражение, пара-
метры биномиального закона. Биномиальным распределением описывается распределение вероятностей дискретной случайной величины.
Основные числовые характеристики биномиального распределения. Математическое ожидание равно M (x)= np. Дисперсия
равна D(x)= npq . Коэффициенты асимметрии и эксцесса равны
A = qnpq− p и E =1−npq6 pq . При неограниченном возрастании числа
испытаний А и Е стремятся к нулю, следовательно, можно предположить, что биномиальное распределение сходится к нормальному с возрастанием числа испытаний.
Пример 29. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А в одном испытании, если дисперсия числа появлений в трёх испытаниях равна 0,63.
Решение. Для биномиального распределения D(x)= npq . Подставим значения, получим 0,63=3p(1− p) отсюда p2 − p+0,21=0
|
|
=1± |
|
|
1±0,4 тогда p = 0,7 и p |
|
|
|
или |
p |
1−0,84 |
= |
2 |
= 0,3. |
|||
|
1,2 |
2 |
|
2 |
1 |
|
||
|
|
|
|
|
|
23.Распределение Пуассона Закон распределения редких явлений
Распределение Пуассона описывает число событий m, происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной сред-
35
ней интенсивностью. При этом число испытаний п велико, а вероятность появления события в каждом испытании р мала. Поэтому распределение Пуассона называют законом редких явлений или простейшим потоком. Параметром распределения Пуассона является величина a = np, характеризующая интенсивность появления
событий в п испытаниях. Формула распределения Пуассона
pn = am e−a .
m!
Пуассоновским распределением хорошо описываются число требований на выплату страховых сумм за год, число вызовов, поступивших на телефонную станцию за определённое время, число отказов элементов при испытании на надёжность, число бракованных изделий и так далее.
Основные числовые характеристики для распределения Пуассона. Математическое ожидание равно дисперсии и равно а. То есть M (x)= D(x)= a . Это является отличительной особенностью
этого распределения. Коэффициенты асимметрии и эксцесса соот-
ветственно равны A = |
1 |
; |
E = |
1 . |
|
a |
|
|
a |
Пример 30. Среднее число выплат страховых сумм в день равно двум. Найти вероятность того, что за пять дней придётся выплатить: 1) 6 страховых сумм; 2) менее шести сумм; 3) не менее шести.
Решение. Среднее число выплат за пять дней 5 2 =10.
1) тогда вероятность того, что придётся выплачивать шесть
сумм: p{k = 6}= ak e−a =106 e−10 ≈ 0,063055; k! 6!
2) обозначим за событие А - выплачено менее шести сумм. Тогда по теореме сложения несовместных событий p(A)= p{k = 0}+ p{k =1}+ p{k = 2}+ p{k =3}+ p{k = 4}+ p{k =5}или
p(A)= |
|
100 |
e−10 |
+ |
|
101 |
e−10 |
+ |
|
102 |
e−10 |
+ |
|
103 |
e−10 |
+ |
|
104 |
e−10 |
+ |
|
0! |
1! |
2! |
3! |
4! |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
+105 e−10 ≈ 0,067086; 5!
3) Событие A - выплачено не менее шести сумм является противоположным для события А, следовательно:
36
p(A )=1 − p(A)≈1 − 0,087086 ≈ 0,932914 .
24. Показательное распределение Непрерывную случайную величину, плотность вероятности
которой определяется выражением:
|
−λx |
; x ≥ 0, |
f (x)= λe |
|
|
0; |
x < 0, |
|
|
|
|
называют величиной, имеющей показательное или экспоненциальное распределение.
Это распределение часто наблюдается при изучении сроков службы различных устройств, времени безотказной работы отдельных элементов, частей системы и системы в целом, при рассмотрении случайных промежутков времени между появлениями двух последовательных редких событий.
Плотность показательного распределения определяется параметром λ, который называют интенсивностью отказов. Этот термин связан с конкретной областью приложения – теорией надёжности.
Выражение интегральной функции показательного распределения можно найти, используя свойства дифференциальной функции:
F (x)= 1−e−λ x ; x ≥ 0,0; x < 0.
Математическое ожидание показательного распределения M (x)= λ1 , дисперсия D(x)= λ12 , среднее квадратическое отклоне-
ние σ = λ1 . Таким образом, для этого распределения характерно,
что среднее квадратическое отклонение численно равно математическому ожиданию. При любом значении параметра λ коэффициенты асимметрии и эксцесса – постоянные величины
А= 2; Е = 9 .
Пример 31. Среднее время работы телевизора до первого отказа равно 500 часов. Найти вероятность того, что наудачу взятый телевизор проработает без поломок более 1000 часов.
37
Решение. Так как среднее время работы до первого отказа равно 500, то λ1 = 500 λ = 5001 . Искомую вероятность найдём по
формуле p{t >1000}= ∞∫ |
1 |
|
e− |
t |
dt =−e− |
t |
|
∞ =e−2 ≈0,135. |
|
|
|
||||||||
|
500 |
500 |
|||||||
500 |
|||||||||
1000 |
|
|
|
|
|
1000 |
Закон больших чисел
25. Лемма Маркова Т. 1. Для любой положительной случайной величины Х ве-
роятность того, что она примет значение, не превосходящее некоторого положительного числа τ , больше разности между единицей и отношением математического ожидания этой случайной ве-
личины к данному числу τ : p{X ≤τ}>1− Mτ(x).
Доказательство. Проведём доказательство для дискретной случайной величины способом, получившим название метода урезания. Пусть x1 , x2 ,K, xn - упорядочная совокупность всех
значений, принимаемых положительной случайной величиной Х с
n
соответствующими вероятностями p1 , p2 ,K, pn причём ∑ pi =1.
i =1
Не нарушая общности доказательства, можно допустить, что значения случайной величины Х расположены в порядке убывания. Выберем некоторое произвольное число τ > 0 и предположим, что первые r значений совокупности больше τ . Так как по условию случайная величина Х принимает только положительные значения, то можно записать неравенство
x1 p1 + x2 p2 +K+ xr pr ≤ x1 p1 + x2 p2 +K+ xr pr +Kxn pn . |
По опреде- |
||||||||||
лению математического ожидания x1p1+x2p2 +K+xr pr +Kxnpn =M(x), |
|||||||||||
следовательно |
x1 p1 + x2 p2 +K+ xr pr ≤ M (x). Заменяя в левой |
||||||||||
части неравенства значения переменных xi |
|
(i =1,2,K,r) числом |
|||||||||
τ , |
получаем |
следующее |
|
усиленное |
неравенство |
||||||
(p + p |
2 |
+K+ p )τ ≤ M (x) или p |
+ p |
+Kp |
r |
≤ |
M (x) |
. Левая часть |
|||
|
|||||||||||
1 |
|
r |
1 |
2 |
|
|
τ |
|
|||
|
|
|
|
|
|
|
|
|
|
38
этого неравенства выражает вероятность того, что случайная величина принимает значения, большие τ , то есть p{X >τ}≤ Mτ(x).
Вероятность противоположного события, а именно вероятность того, что случайная величина примет значения не больше τ ,
определяется следующим неравенством: p{X ≤τ}>1− Mτ(x).
Лемма Маркова справедлива для любого распределения положительной случайной величины.
Пример 32. Среднее число студентов в группе, получивших на экзамене неудовлетворительные оценки, равно пяти. Оценить вероятность того, что в наудачу взятой группе будет более восьми двоек.
Решение. Используем неравенство Маркова. По условию за- |
||
дачи имеем |
|
M (x)= 5, τ =8. Тогда искомая вероятность равна |
p{X >8}≤ 5 |
8 |
или p{X >8}≤ 0,625. |
|
|
26. Неравенство Чебышева Т. Если случайная величина Х имеет конечные математиче-
ское ожидание и дисперсию, то для любого положительного числа τ справедливо неравенство p{X − M (x) ≤τ}>1− Dτ(2x), то есть
вероятность того, что отклонение случайной величины Х от своего математического ожидания по абсолютной величине не превзойдёт τ , больше разности между единицей и отношением дисперсии этой случайной величины к квадрату τ .
Доказательство. Воспользуемся леммой Маркова. Рассмотрим случайную величину Z = X − M (x), для некоторых значений
которой выполняется неравенство X − M (x) ≤τ . Так как случайная величина Z положительна, то неравенства X − M (x) ≤τ и
X − M (x)2 ≤τ 2 равносильны. Применив лемму Маркова к слу-
чайной величине Z 2 = X − M (x)2 , получим
p{X − M (x) ≤τ 2 }>1− M[X − M (x)]2 . Числитель дроби в правой
τ 2
части неравенства по определению есть дисперсия случайной ве-