ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 595
Скачиваний: 0
СОДЕРЖАНИЕ
Более элементарные по сравнению с атоллами
Осколки частиц, или Трудное разделение
Физика возвращается к повседневным заботам
Теория наносит ответный удар: объединение
Теневая сторона стандартной модели
Проблема происхождения массы, известная как проблема полей Хиггса
Решение головоломки: как, кто, где и когда?
Предположения о происхождении жизни
Нынешняя жизнь: клеточные структуры
Решение головоломки: как, кто и почему?
Секвенирование генома человека
Решение головоломки: почему, как, кто и где, когда?
Получение или утрата атмосферного газа
Погода и климат: гипотезы (весьма добротные), прогнозы (не столь добротные)
Решение головоломки: как и где?
Измерение межзвездных расстояний
Галактики: первые теории и наблюдения
Космологический вклад Эйнштейна
Чем крупнее телескопы, тем больше расстояния до звезд
Одна большая Галактика или многочисленные обособленные галактики
Столкнувшись с неожиданным: ускорение Вселенной
В темноте рассуждать о темной энергии
Решение головоломки: где, когда, как и кто?
2. Какова доля таких звезд, имеющих планеты ?
3. Какова доля планет, обращающихся вокруг своих звезд в пределах, где возможно зарождение жизни ?
4. Какова доля благоприятно расположенных планет, где действительно зародилась жизнь?
5. Какова доля форм жизни, приведших к возникновению разума ?
7. В течение скольких лет разумная цивилизация передает в космос поддающиеся обнаружению сигналы?
13 .Предсказание землетрясений
15. Труды Эйнштейна: помимо теории относительности
Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?
Глава 3. Химия. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?
Глава 4. Биология. Каково строение и предназначение протеома?
Глава 5. Геология. Возможен ли точный долговременный прогноз погоды?
Глава 6. Астрономия. Почему Вселенная расширяется со все большей скоростью?
Опарин обнаружил, что белки, находящиеся в растворенном состоянии, могут слипаться, образуя сгустки. Такие сгустки он назвал коацерватами и заявил, что они способны на метаболизм. Из-за революции в России работы Опарина были неизвестны на Западе до конца 1930-х годов.
В статье 1929 года «Происхождение жизни» [«The Origin of Life», Rationalist Annual. Vol. P. 148; Происхождение жизни // Планета Земля. М., 1961. С. 315-334] Дж. Б. С. Холдейн, британский биохимик, строит догадки о происхождении жизни на Земле. Приводя недавние опыты о влиянии ультрафиолетового излучения на химические реакции, Холдейн предположил, что ультрафиолетовое излучение своим воздействием на первичную атмосферу Земли в виде двуокиси углерода (СО2), паров воды (Н2О) и аммиака (NH3) могло вызвать к жизни органические соединения, которые собирались в океане, достигнув в итоге «состояния горячего разбавленного бульона». Последующий химический синтез породил первичные организмы, питавшиеся окружающими их органическими веществами. Холдейн особо сосредоточил внимание на воспроизведении, полагая, что первичные организмы походили на простые вирусы, или вироиды. Круг интересов Холдейна был весьма широк, а его рационалистические взгляды — хорошо известны. В конце жизни кто-то спросил Холдейна, что он в своем длительном изучении природы подразумевал под ее творцом.
Холдейн задумался: возможно, около 350 тыс. видов жуков, составляющих более половины всех насекомых, а затем ответил: «Создатель, если он есть, питает необыкновенную слабость к жукам» [приводится в сообщении о прочитанном Холдейном 7 апреля 1951 года Докладе: Journal of 'the British Interplanetary Society. 1951. Vol. 10].
Так как Опарин и Ходдейн независимо друг от друга пришли к сходным выводам, их гипотезы часто представляют вместе в виде теории Опарина—Холдейна. При всем сходстве выводов Опарин прежде всего подчеркивает метаболизм, тогда как Ходдейн — воспроизведение. Это расхождение разбивает сторонников теории происхождения жизни на два лагеря.
После выдвижения гипотезы остается ждать появления доступного проверке предсказания и проведения соответствующих опытов. В 1952 году Стэнли Миллер (аспирант Нобелевского лауреата Гарольда Клейтона Ури в Чикагском университете) проделал новаторский опыт по проверке теории Опарина—Холдейна. Предполагаемые составляющие первичной атмосферы Земли — вода, водород, аммиак и метан — после обеспложивания вводились в соответствующий прибор, где подвергались электрическим разрядам, имитирующим молнии (рис. 3.1).
Через несколько дней после эксперимента Миллер обнаружил в воде простые органические молекулы (табл. 2), среди которых были аминокислоты, кирпичики живых организмов (см.: Список идей, 5. Аминокислоты). Из всего многообразия аминокислот в природе встречается лишь около 100 таких кислот, 20 из которых обнаружены в живых организмах. Четыре кислоты получены в миллеровском приборе. Большое количество этих простых, но примечательных органических молекул возникло всего за несколько дней.
Данные результаты подтвердили теорию Опарина—Холдейна. Конечно, полностью сформировавшиеся живые организмы получены не были. Хотя произведенные прибором Миллера молекулы представляли собой лишь простые составные части необходимых для обеспечения жизни молекул, само их образование в течение нескольких дней существенно укрепляло позиции данной теории.
Опытное подтверждение теории Опарина—Холдейна о происхождении жизни носило все же отрывочный характер, поскольку подробности биохимии жизни еще не были раскрыты.
Рис. 3.1. Прибор, использованный Миллером для воспроизведения условий, существовавших на первобытной Земле (из кн.: Raven P. H., Johnson G. В. Biology. 6th edition. N.Y., 2002 [Кемп П., Арме К. Введение в биологию / Пер. с англ. Л. Александрова и др. / Под ред. Ю. Полянского. М.: Мир, 1988. С. 339]
В последующий год все круто изменилось: в Кембридже Джеймс Уотсон и Фрэнсис Крик установили исходное строение молекулы, отвечающей за наследственность, дезоксирибонуклеиновой кислоты — ДНК. После того как молекулярные биологи приступили к упорядочиванию запутанных отношений между ДНК, РНК (рибонуклеиновой кислотой), белками и прочими молекулами, обеспечивающими деятельность живых организмов, стали известны дополнительные сведения о молекулярных взаимодействиях. Как говорится, бес прячется в подробностях.
Таблица 2 Молекулы, образованные в ходе опыта Миллера
Молекула |
Формула |
Молекула |
Формула |
|
молекулы |
|
молекулы |
Цианид водорода |
CHN |
Альфа-аминомасляная |
C4H9NO2 |
Циан |
C2N2 |
кислота |
|
Цианацетилен |
C3HN |
Альфа-аминоизомас- |
C4H,NO2 |
Формальдегин |
СН2О |
ляная кислота |
|
Уксусный альдегид |
С2Н4О |
Муравьиная кислота |
сн2о2 |
Пропиональдегид |
С3Н6О |
Уксусная кислота |
С2Н4О2 |
Глицин |
C2H5NO2 |
Пропионовая кислота |
С3Н6О2 |
Саркозин |
C3H7NO2 |
Мочевина |
CH4N2O |
Гликолевая кислота |
С2Н4О3 |
Аспарагиновая кислота |
C4H7NO4 |
Алании |
C3H7NO2 |
Иминоуксуснопро- |
C5H9NO4 |
п-метилаланин |
C4H9NO2 |
пионовая кислота |
|
Молочная кислота |
С3Н5О3 |
Янтарная кислота |
с4н6о4 |
|
|
Глутаминовая кислота |
C4H9NO4 |
Теория Опарина—Холдейна о происхождении жизни не содержала подробного списка химических реакций по зарождению жизни, поскольку на ту пору эти молекулы не были известны. Далее дается описание нынешнего понимания молекулярной основы жизнедеятельности организмов. Постараемся выяснить, что же могло послужить первой, простейшей формой жизни. Затем рассмотрим условия на Земле во время ее формирования и проследим, как химические реакции могли превратить простые молекулы в виде смеси в тот молекулярный механизм, что управляет ходом жизни. Потом мы рассмотрим некоторые иные трудности, делающие вопрос происхождения жизни одной из основных нерешенных проблем. Наконец, мы исследуем немногие пути, способные привести к ее разгадке.
Нынешняя жизнь: клеточные структуры
Ныне жизнь предстает крайне сложным явлением. Учитывая миллионы видов (где 350 тыс. приходится лишь на жуков) трудно рассчитывать на сохранение простейшей формы жизни, которую можно было бы исследовать. Ее нет. После 4 млрд. лет мутаций, воспроизведения, борьбы за пищу и изменений окружающей среды вряд ли стоит удивляться, что первой предполагаемой формы жизни давно не существует.
В сущности, что же такое жизнь? В 1947 году неугомонный британский генетик Дж. Б. С. Ходдейн сказал: «Я не собираюсь отвечать на этот вопрос». После борьбы с промежуточными формами вроде вирусов, вироидов и вирионов биология двинулась дальше в поисках четкого определения жизни.
Живые организмы порой описывались в соответствии с присущими им отправлениями (функциями):
Метаболизм: поглощение энергии, ее усвоение и вывод отходов.
Рост и восстановление: достижение нужных размеров и устранение неполадок.
Ответ на раздражители: выполнение действий в соответствии с внешними событиями.
Воспроизводство: создание себе подобного организма.
Современная биология избрала более простой путь: любое живое существо — клеточное. Отдельный организм может быть одноклеточным или состоять из множества взаимодействующих специализированных клеток, но в основе всех организмов лежит клетка. Далее, каждая клетка обладает мембранной оболочкой для обособления ее от остального мира. Внутри этой мембраны содержится полный набор команд по работе и воспроизведению клетки. Эти команды записаны в виде кода в дезоксирибонуклеиновой кислоте — ДНК.
Долгое время считалось, что существует лишь два вида клеток — эукариоты и прокариоты (рис. 3.2). Они разнятся размещением команд (эукариоты имеют ядро, а у прокариот оно отсутствует) и воспроизведением (эукариоты размножаются путем деления клеток, именуемого митозом; прокариоты — простым разрывом клеток). Недавно выяснилось, что существует еще одна разновидность клеток, названных археями. Анатомически археи сходны с прокариотами — у них нет ядра, но археи обладают, помимо таких же, как у эукариот, лишь им присущими генами.
ДНК содержится в одной хромосоме; отсутствует ядро
ДНК содержится во многих хромосомах внутри ядра
Рис. 3.2. Прокариотная и эукариотная клетки
ДНК архей содержится в простой кольцевой молекуле, а не в нескольких скрученных молекулах, где хранится ДНК эукариот. Большинству архей присущ метаболизм без участия кислорода (анаэробные археи), а некоторые (именуемые экстремофилами) обитают в условиях, при которых не выжили бы иные организмы. Гипертермофилы, обитающие в воде с температурой выше точки кипения (100°С), были обнаружены в горячих источниках Йеллоустонского национального парка, а также близ глубоководных термальных отдушин, именуемых «черными курильщиками» (о них рассказ впереди). Другие живут в холодной, соленой или кислотной среде вроде пресноводных озер под антарктическим льдом, соленых озер и отработанной угольной породы. С конца 1970-х это крайне захватывающая область исследования.
Археи считаются самыми древними клетками, предшествующими и прокариотам, и эукариотам. Поэтому археи по своему виду находятся ближе к самой ранней форме жизни по сравнению с другими клетками. Отсутствие ядра и болеепростая ДНК делают архею возможным соискателем на близкое родство с первичным простым организмом.