Файл: Факторы неспецифической защиты организма (внешние барьеры, клеточные и гуморальные факторы). Защитные свойства кожи и слизистых. Виды иммунитета.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 249

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Факторы неспецифической защиты организма (внешние барьеры, клеточные и гуморальные факторы). Защитные свойства кожи и слизистых. Виды иммунитета.

Понятие о паттернах («образы», «маркеры»):

Центральные и периферические органы иммунной системы.

Клетки иммунной системы: иммунокомпетентные, антиген-представляющие и антиген-неспецифической защиты, их характеристика.

Антигены кластерной дифференцировки клеток (cluster of differentiation - CD), методы определения. Маркеры лейкоцитов человека.

В- лимфоциты, этапы созревания и дифференцировки. В-клеточный рецептор (BCR).

Т-лимфоциты: этапы созревания и дифференцировки. Популяции и субпопуляции Т-лимфоцитов.

Типы Т-клеточного рецептора (ТСR) у Т-лимфоцитов: альфа/ бета (α,β) и гамма/дельта (γ,δ), их функциональные различия.

Характеристика основных субпопуляций Т-хелперов (Th)-Th1,Th2 : CD-маркер и мембранные рецепторы клеток, цитокиновые профили, функции.

Характеристика цитотоксических Т-лимфоцитов( Тс): CD-маркер и основные мембранные рецепторы клетки, синтезируемые цитокины, функция.

Антигены главного комплекса гистосовместимости (МНС I и МНСII).

Механизм процессинга и презентации экзогенных (фагоцитированных и эндоцитированных) пептидных антигенов.

Процессинг и презентациия эндогенных (синтезируемых на рибосомах клетки) пептидных антигенов.

Строение и классы иммуноглобулинов.

Изотипы, аллотипы и идиотипы антител.

Рецепторная и медиаторная кооперация антигенпредставляющих клеток (АПК), Т- и В- лимфоцитов при развитии гуморального иммунного ответа. Первичный и вторичный иммунный ответ. Иммунологическая память.

Т-зависимый иммунный ответ.

Методы оценки напряженности специфического антибактериального иммунитета.


Для МНС I класса характерна высокая ско­рость биосинтеза — процесс завершается за 6 часов.

  1. Этот комплекс экспрессируются на поверхности практически всех клеток, кроме эритроцитов (в безъядерных клетках отсутс­твует биосинтез) и клеток ворсинчатого трофобласта («профилактика» отторжения пло­да). Экспрессия молекул заметно усиливается под влиянием цитокинов, напри­мер γ-интерферона.

Основная биологи­ческая роль HLA I класса состоит в том, что они определяют биологическую индивидуаль­ность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток. Заражение клетки вирусом или мутация изменяют структуру HLAI класса. Содержащая чужеродные или модифицированные пептиды молекула МНС I класса имеет нетипичную для данного организма структуру и является сиг­налом для активации Т-киллеров (СО8+-лим-фоциты). Клетки, отличающиеся по I классу, уничтожаются как чужеродные.

МНС 1 – для облегчения распознавания внутриклеточной инфекции.

В структуре и функции МНС II класса есть ряд принципиальных отличий.

- имеют более сложное строение. Комплекс об­разован двумя нековалентно связанными по­липептидными цепочками (альфа-цепь и бета-цепь), имеющими сходное доменное строение. Альфа-цепь имеет один глобуляр­ный участок, а бета-цепь — два. Обе цепи как трансмембранные пептиды состоят из трех участков — внеклеточного, трансмембранного и цитоплазматического.

- «щель Бьоркмана» в МНС II клас­са образована одновременно обеими цепочками. Она вмещает больший по размеру олигопептид (12-25 аминокислотных остатков), причем пос­ледний полностью «скрывается» внутри этой щели и в таком состоянии не обнаруживается специфическими антителами.

-МНС II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный са­мой клеткой.

-В-четвертых, МНС II класса экспрессируется на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хел-перах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология.

Механизм процессинга и презентации экзогенных (фагоцитированных и эндоцитированных) пептидных антигенов.



Профессиональные антигенпредставляющие клетки (дендритные, макрофаги, В-лимфоциты) поглощают чужеродный антиген, образуя фагосому. При слиянии фагосомы с лизосомой происходит деградация чужеродных антигенов, в результате чего образуются пептиды,которые поступают в рибосомальный компартмент клетки.Синтез молекул MHC II происходит на рибосомах в шероховатом эндоплазмотическом ретикулуме (ШЭР). Под контролем калнексина (шаперон) формируются а- и В- цели молекулы MHC II. Здесь же, на рибосомах ШЭР, синтезируется инвариантная цель (j-цепь). Она способствует объединению а- и В- цепи в молекулу MHC II и прикрывает её пептидсвязывающую бороздку от процессированных пептидов в протеосоме, предназначенных для молекул MHC I.

Такой комплекс - молекула MHC II + j-цепь - переносится через аппарат Гольджи в

эндосомальный компартмент клетки, где находятся пептиды, образовавшиеся из чужеродного

антигена. Под влиянием катепсинов (лизосомальные ферменты) происходит разрушение j-цепи и

«загрузка» пептидов в открывшуюся пептидсвязывающую бороздку. Молекула МНС II+пептид из компартмента транспортируется на поверхность АПК и презентируется для распознавания CD4 Th2-лимфоцитами.

Процессинг и презентациия эндогенных (синтезируемых на рибосомах клетки) пептидных антигенов.


Процессинги презентация эндогенных (синтезированных на рибосомах клетки) антигенов.

вирусный или опухольассоциированный белок синтезируется на рибосомах клетки

организма человека. Синтезированный полипептид покидает рибосому и подвергается процессингу.

Первым этапом процессинга является убиквитированние полипептидов. Убиквитин-

низкомолекулярный термостабильный белок, который присоединяется в строго определенных участках полипептида, образуя «метки» для протеолиза. Протеолиз убиквитированных белков происходит в протеасоме (мультипротеиновый ферментный комплекс, содержащий протеолитические ферменты и находящийся в цитоплазме. Кодируется генами локуса LMP, который располагается на б-ой хромосоме рядом с генами MHC II).

Процессированные в протеосоме пептиды с помощью транспортных белков ТАР-Гены локуса ТАР находятся на 6-ой хромосоме рядом с генами MHCII. Они кодируют белки (TAP1, TAP2), транспортирующие процессированные белкиз протеосомы в шэр.

поступают в ШАР. На рибосомах в ШЭР синтезируются а-цепь и в2-микроглобулин, которые с помощью белков- шаперонов( Молекулярные шапероны регулируют сворачивание синтезированных белков, препятствуют их агрегации.калнексин, калретикулин, тапасин) формируют молекулу МНС класса. В ШЭР пептиды «загружаются» в пептидсвязывающую бороздку молекулы МНС и транспортируются через комплекс Гольджи

на поверхность клетки для презентации цитотоксическим CD8 - Т-лимфоцитов.

Строение и классы иммуноглобулинов.


Антитела - иммуноглобулины, продуцируемые В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на дв одинаковых антигенсвязывающих фрагмента - Fab (Fragment anligen binding) и Fc (Fragmenl crislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулинов IgG, IgM, IgA, IgD, IgE.

Они состоят из полипептидных цепей. В молекуле иммуноглобулина различают четыре структуры:

1) первичную – это последовательность определенных аминокислот. Она строится из нуклеотидных триплетов, генетически детерминируется и определяет основные последующие структурные особенности;


2) вторичную (определяется конформацией полипептидных цепей);

3) третичную (определяет характер расположения отдельных участков цепи, создающих пространственную картину);

4) четвертичную. Из четырех полипептидных цепей возникает биологически активный комплекс. Цепи попарно имеют одинаковую структуру.

Большинство молекул иммуноглобулинов составлено из двух тяжелых (H) цепей и двух легких (L) цепей, соединенных дисульфидными связями. Легкие цепи состоят или из двух k-цепей, или из двух l-цепей. Тяжелые цепи могут быть одного из пяти классов (IgA, IgG, IgM, IgD и IgE).

Каждая цепь имеет два участка:

1) постоянный. Остается постоянным в последовательности аминокислот и антигенности в пределах данного класса иммуноглобулинов;

2) вариабельный. Характеризуется большой непостоянностью последовательности аминокислот; в этой части цепи происходит реакция соединения с антигеном.

Каждая молекула IgG состоит из двух соединенных цепей, концы которых формируют два антигенсвязывающих участка. На вариабельном участке каждой цепи имеются гипервариабельные участки: три в легких цепях и четыре в тяжелых. Разновидности последовательности аминокислот в этих гипервариабельных участках определяют специфичность антитела. При определенных условиях эти гипервариабельные области могут также выступать в роли антигенов (идиотипов).

В молекуле иммуноглобулина меньше двух антигенсвязывающих центров быть не может, но один может быть завернут внутрь молекулы – это неполное антитело. Оно блокирует антиген, и тот не может связаться с полными антителами.

При энзиматическом расщеплении иммуноглобулинов образуются следующие фрагменты:

1) Fc-фрагмент содержит участки обеих постоянных частей; не обладает свойством антитела, но имеет сродство с комплементом;

2) Fab-фрагмент содержит легкую и часть тяжелой цепи с одним антигенсвязывающим участком; обладает свойством антитела;

3) F(ab)Т2-фрагмент состоит из двух связанных между собой Fab-фрагментов.

Другие классы иммуноглобулинов имеют такую же основную структуру. Исключение – IgM: является пентамером (состоит из пяти основных единиц, связанных в области Fc-концов), а IgA – димер.




Иммуноглобулины

Существует пять классов иммуноглобулинов у человека.

1. Иммуноглобулины G – это мономеры, включающие в себя четыре субкласса (IgG1; IgG2; IgG3; IgG4), которые отличаются друг от друга по аминокислотному составу и антигенным свойствам. Антитела субклассов IgG1 и IgG4 специфически связываются через Fc-фрагменты с возбудителем (иммунное опсонирование), а благодаря Fc-фрагментам взаимодействуют с Fc-рецепторами фагоцитов, способствуя фагоцитозу возбудителя. IgG4 участвует в аллергических реакциях и неспособен фиксировать комплемент.

Свойства иммуноглобулинов G:

1) играют основополагающую роль в гуморальном иммунитете при инфекционных заболеваниях;

2) проникают через плаценту и формируют антиинфекционный иммунитет у новорожденных;

3) способны нейтрализовать бактериальные экзотоксины, связывать комплемент, участвовать в реакции преципитации.

2. Иммуноглобулины М включают в себя два субкласса: IgM1 и IgM2.

Свойства иммуноглобулинов М:

1) не проникают через плаценту;

2) появляются у плода и участвуют в антиинфекционной защите;

3) способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент;

4) играют важную роль в элиминации возбудителя из кровеносного русла, активации фагоцитоза;

5) образуются на ранних сроках инфекционного процесса;

6) отличаются высокой активностью в реакциях агглютинации, лизиса и связывания эндотоксинов грамотрицательных бактерий.

3. Иммуноглобулины А – это секреторные иммуноглобулины, включающие в себя два субкласса: IgA1 и IgA2. В состав IgA входит секреторный компонент, состоящий из нескольких полипептидов, который повышает устойчивость IgA к действию ферментов.

Свойства иммуноглобулинов А:

1) содержатся в молоке, молозиве, слюне, слезном, бронхиальном и желудочно-кишечном секрете, желчи, моче;

2) участвуют в местном иммунитете;

3) препятствуют прикреплению бактерий к слизистой;

4) нейтрализуют энтеротоксин, активируют фагоцитоз и комплемент.

4. Иммуноглобулины Е – это мономеры, содержание которых в сыворотке крови ничтожно мало. К этому классу относится основная масса аллергических антител – реагинов. Уровень IgE значительно повышается у людей, страдающих аллергией и зараженных гельминтами. IgE связывается с Fc-рецепторами тучных клеток и базофилов.