ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.11.2023
Просмотров: 138
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
(21)
Толуол может образоваться также из пропилена по аналогичному пути:
(22)
Бензол — термически стойкое вещество, но в промышленных условиях он частично вступает в реакцию, причем основным продуктом взаимодействия (при небольшой степени превращения) является бифенил:
(23)
(24)
(25)
Далее бифенил может взаимодействовать с Н- и бензолом с образованием терфенила С6Н6—С6Н4—С6Н5 и т. д.
В условиях пиролиза образуется большое количество нафталина и других конденсированных углеводородов (антрацен, фенантрен и др.):
(26)
Дегидрирование осуществляется путем радикально-цепных реакций типа (20) Образование более сложных ароматических соединений продолжается далее с участием С4Н6 и С2Н4 (19, 20, 23-25)
Толуол термически значительно менее стабилен, чем бензол, так как энергия разрыва связи С—Н в его метальной группе примерно равна энергии связи С—С насыщенных углеводородов. Основные продукты разложения толуола — бензол, метан, водород, 1,2-бифенилэтан. Радикальный механизм распада толуола включает разложение на бензил-радикал и Н• с продолжением цепи распада этими радикалами.
Пиролиз алкилароматических углеводородов с числом атомов углерода в алкильной группе два и более протекает значительно легче, чем толуола, поскольку эти углеводороды имеют ослабленную С—С-связь в β-положении к бензольному кольцу.
В продуктах пиролиза наряду с бутадиеном-1,3 присутствуют в заметных количествах высшие диены, особенно диены С5, в том числе изопрен, пентадиен-1,3, при жестких условиях пиролиза — циклопентадиен. Последний может получаться из циклопентана в результате радикально-цепного процесса дегидрирования. Возможно также образование его из этилена и пропилена с промежуточным образованием этенил- и пропенил-радикалов. [2]
Механизм образования тяжелых продуктов реакции.
Кокс может образовываться путем конденсации и дегидроконденсации алкенов и ароматических углеводородов, получившихся на первичных стадиях реакции, либо в результате разложения исходных углеводородов непосредственно или через промежуточные радикалы (например, •СН3, :СН2) на углерод и водород.
В первом варианте имеющиеся в реакционном объеме алкены и ароматические углеводороды подвергаются реакциям конденсации, поликонденсации и дегидрополиконденсации [реакции (23)-(25)] с образованием поликонденсированных ароматических углеводородов. В результате реакций конденсации образуются плоские структуры (крупные молекулы) из углеродных атомов. Молекулы могут конденсироваться на поверхности реакционной системы постепенно, образуя за счет дегидрогенизации пироуглерод (кокс), или могут образовать в газовой фазе стабильные жидкие капли (зародыши кокса), которые оседают в дальнейшем на поверхности либо формируют частицы кокса в объеме, уносимые далее из зоны реакции потоком пирогаза.
В некоторых работах поддерживается представление о другом пути образования кокса —непосредственном разложении исходных углеводородов или простейших продуктов их дегидрирования (например, ацетилена) на поверхности реактора или коксового отложения. Так, на основании экспериментальных исследований был сделан вывод, что кокс при пиролизе углеводородов образуется в основном при прямом разложении углеводородных молекул (исходных или образовавшихся из них) при взаимодействии их со свободными от водорода активными центрами углеродной поверхности, имеющими свойства, аналогичные свойствам радикалов. Однако химизм и пути коксообразования наиболее рационально могут быть объяснены на основе представлений о различии условий и соответственно физико-химических процессов в различных коксообразующих системах и даже в разных точках одной системы.
Кокс, отлагающийся в реакторе пиролиза, может образоваться двумя путями:
а) гетерогенным разложением молекул углеводородов на стенке реактора или на частицах металла, извлеченных из металлической поверхности и остающихся на поверхности растущего слоя кокса;
б) при реакциях присоединения в объеме реактора, которым особенно благоприятствуют полициклические ароматические углеводороды, содержащиеся в сырье (например, газойлевой фракции).
В пользу представления о двух различных путях образования кокса при пиролизе углеводородов свидетельствует, в частности, разнообразие типов и структур кокса, формирующегося при термическом разложении жидких и газообразных углеводородов. При температурах промышленного пиролиза — от 650 до 900 °С — может формироваться кокс трех типов, отличающихся строением (макроструктурой): волокнистый нитевидный ленточный (дендрит) или игольчатый, слоистый анизотропный, образующий прочную пленку, и аморфный («пушистый»), изотропный, образующий относительно непрочную пленку черного цвета.
Количественное соотношение двух путей образования кокса зависит от условий ведения процесса (структура и парциальное давление паров исходных углеводородов, температура реакции, состояние стенок реактора и др.). Кокс, образованный каталитическими реакциями (нитевидный), очевидно, преобладает при относительно низких температурах и на ранних стадиях процесса. При более высоких температурах и значительных степенях превращения исходного сырья, по-видимому, возрастает значение конденсационного механизма (получается слоистый анизотропный и аморфный изотропный кокс), причем тип кокса зависит от парциального давления углеводородов, от свойств поверхности, на которой кокс отлагается, строения исходных углеводородов, температуры и ряда других факторов. С увеличением парциального давления углеводородов повышается доля образующегося аморфного кокса. [2, 4]
2. Методическая часть
2.1. Метод анализа непредельных углеводородов
При определении группового химического состава устанавливают количественное содержание в нефтяных фракциях аренов, циклоалканов, алканов и алкенов. Он определяется проще, чем индивидуальным состав. При детализированном изучении группового состава бензина находят отдельно содержание алканов нормального и изостроения. При анализе циклоалканов определяют также содержание пяти- и шестичленных циклов, а из суммарного количества алкенов выделяют углеводороды различного строения (с разным положением двойной связи, степенью разветвленности углеводородного скелета и т. п.).
Для определения группового химического состава используют различия в физических и химических свойствах углеводородов, принадлежащих к разным классам. Для того привлекают как инструментальные, так и неинструментальные методы анализа. В основе неинструментальных методов лежит нахождение наиболее легко определяемых свойств нефтепродуктов, таких, как показатель преломления, плотность, критическая температура растворения в анилине (анилиновая точка), адсорбируемость, взаимодействие с серной кислотой и др.
АНИЛИНОВЫЙ МЕТОД
Среди неинструментальных методов определения группового химического состава бензиновых фракций наиболее широкое распространение получил анилиновый метод, основанный на неодинаковой растворимости углеводородов различных классов в анилине. При смешении нефтяной фракции с анилином при комнатной температуре обычно образуются два слоя, т. е. не происходит полного растворения нефтепродукта в анилине. Если эту смесь нагревать, постоянно перемешивая, то при достижении определенной температуры произойдет полное взаимное растворение анилина и нефтепродукта, слои исчезнут, и жидкость станет однородной. Температуру, соответствующую полному взаимному растворению анилина и нефтепродукта, называют анилиновой точкой или критической температурой растворения (КТР) данного нефтепродукта в анилине. Наиболее низкими анилиновыми точками среди углеводородов характеризуются арены, наиболее высокими — алканы; циклоалканы занимают промежуточное положение, Алкены и цнклоалкены имеют несколько более низкие анилиновые точки по сравнению с циклоалканамп близкой молекулярной массы. В пределах одного гомологического ряда анилиновые точки, как правило, возрастают с увеличением массы и температуры кипения углеводорода. Такая же закономерность наблюдается и для фракций, выделенных из одной и той же нефти.
Существуют два метода определения анилиновых точек: метод равных объемов и метод максимальных анилиновых точек. В первом случае берут равные объемы анилина и исследуемой фракции и определяют температуру их полного смешения. Полученную температуру называют анилиновой точкой. Во втором случае находят температуру, называемую максимальной анилиновой точкой или истинной критической температурой растворений в анилине. Ее получают после нескольких определений температуры растворения продукта в возрастающих количествах анилина. При увеличении количества анилина температура полного растворения сначала повышается и при некотором соотношении фракции и анилина достигает максимума, после чего при дальнейшем увеличении количества анилина начинает падать. Максимальную температуру полного растворения принимают за максимальную анилиновую точку (истинную КТР в анилине). Обычно разница между анилиновыми точками фракции и их максимальными анилиновыми точками невелика, причем она увеличивается с увеличением температур кипения фракций и увеличением содержания в них аренов.
При анализе группового химического состава прямогонного бензина со сначала разгоняют из колбы с дефлегматором (шариковым или елочным) или на небольшой колонке на узкие стандартные фракции, пределы выкипания которых соответствуют пределам выкипания аренов в смеси с другими углеводородами:
Фракция. °С
н. к. — 60 Не содержащая аренов
60—95 Бензольная
95—122 Толуольная
122—150 Ксилольная и этилбензольная
150—200 Содержащая арены С9 — С10
Для каждой фракции определяют максимальную анилиновую точку (Т), после чего из фракций удаляют арены и для деароматизированных фракций вновь определяют анилиновые точки (Т1) методом равных объемов.
Массовую долю аренов А, %, рассчитывают по формуле: