Файл: Реферат применение формулы Байеса в профессии и в экономике студент группы 38. 03. 02.rtf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 149

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

Основные понятия и определения

Законы теории вероятностей.

Введение в байесовские сети доверия.

Моделирование в условиях неопределенности

Экспертные системы и формальная логика

Особенности вывода суждений в условиях неопределенности

Использование Байесовых сетей.

Вероятности прогнозируемых значений отдельных переменных

Пример построения простейшей байесовской сети доверия.

Расчет в байесовской сети.

Байесовские сети доверия как одно из направлений современных экспертных систем.

Представление знаний с использованием байесовской сети доверия и условная независимость событий.

Замечание о субъективных вероятностях и ожидания.

Синтез сети на основе априорной информации.

Пример использования Байесовых сетей

Медицина

Космические и военные применения

Компьютеры и системное программное обеспечение

Обработка изображений и видео

Финансы и экономика

Описание прикладных программ

AUAI — Ассоциация анализа неопределенности в искусственном интеллекте

NETICA

Knowledge Industries

Data Digest Corporation

BayesWare, Ltd

HUGIN Expert

Выводы

Расчет в байесовской сети.



Следует отметить, что следствием байесовской теоремы является то, что она поддерживает оценку графа в обоих направлениях. Процесс рассуждения в ЭС сопровождается распространением по сети вновь поступивших свидетельств.

Введение в байесовские сети доверия новых данных приводит к возникновению переходного процесса распространения по байесовской сети доверия вновь поступившего свидетельства. После завершения переходного процесса каждому высказыванию, ассоциированному с вершинами графа, приписывается апостериорная вероятность, которая определяет степень доверия к этому высказыванию ( believe – доверять(англ.) ):

,

где D – объединения всех поступивших в систему данных;

Vji – композиционные высказывания, составленные из элементарных, то есть множество значений Xi составляют Vji ;

Xi – пропозиционные переменные (то есть переменные, значениями которых являются высказывания), определяющие состояние вершин БСД.

При этом процесс распространения вероятностей в БСД основывается на механизме пересчёта, в основе функционирования которого лежит следующая последовательность действий:

С каждой вершиной сети ассоциирован вычислительный процесс (процессор), который получает сообщения от соседних (связанных с ним дугами) процессоров.

Этот процессор осуществляет пересчёт апостериорных вероятностей Bel(Vji) для всех возможных значений Vji данной переменной Xi и посылает соседим вершинам ответные сообщения.

Деятельность процессора инициируется нарушением условий согласованности с состояниями соседних процессоров и продолжается до восстановления этих условий.

В некоторых системах, реализующих байесовские сети доверия используется метод noisy or gate, позволяющий существенно упростить вычислительный процесс. Суть его заключается в том, что в ряде примеров вершина «y» может быть условно независима от целого ряда вершин «xr» , где r = 1,2,..., n. Для того, чтобы сократить оценку 2n вероятностей, которые необходимы при использовании таблиц условных вероятностей
, и используется данный метод. Согласно ему вероятность «y» в зависимости от n вершин «xr» оценивается как

,

что позволяет оценить только p(y | x 1), p(y | x 2) ... p(y | x n), и на их основании определить оценку p( y | x1 x2 ... xn).


Байесовские сети доверия как одно из направлений современных экспертных систем.



Выбор байесовских сетей доверия в качестве ЭС по сравнению с другими направлениями их построения обусловлен рядом причин.

1.Логический вывод в байесовских сетях доверия является трактуемым с вычислительной точки зрения, так как теория, лежащая в его основе, имеет аксиоматическое обоснование, отработанное в течение последних десятилетий. В то время, как системы, основанные на теории нечётких множеств, на теории функций доверия, теории Демпстера - Шефера не имеет строгого математического обоснования и в большинстве случаев используют эвристические процедуры ( ЭС типа MYCIN, EMYCIN и т.д.).

2.Показано, что психологически проще выполнять субъективное вероятностное оценивание причинно-следственных связей.

3.Метод noisy or gate обеспечивает эффективное вычисление условных вероятностей.

4.Несмотря на то, что теорию вероятности зачастую критикуют с точки зрения её использования в «знаниях», она не нарушает общих представлений о «замкнутом мире» объектов.


Представление знаний с использованием байесовской сети доверия и условная независимость событий.



Рассмотрим фрагмент представления медицинской БЗ, в которой можно выделить

заболевания, симптомы их проявления, а также факторы риска, влияющие на возникновение

заболеваний. Пусть некоторая упрощённая модель качественного описания БЗ имеет вид,

приведенный на рис.2. Эта модель соответствует следующему набору медицинских знаний:

Одышка [o] может быть вследствие туберкулёза [t], рака лёгких [r] или бронхита [b], а также

вследствие ни одного из перечисленных заболеваний или более, чем одного.

Визит в Азию [a] повышает шансы туберкулёза [t].

Курение [k] – фактор риска, как для рака [r], так и бронхита [b].

Результаты рентгена, определяя затемнённость в лёгких не позволяют различить рак [r] и

туберкулёз [t], так же как не определяет факт наличия или отсутствия одышки [o].



Последний факт представляется в графе промежуточной переменной (событием) [tr]. Эта

переменная соответствует логической функции «или» для двух родителей ([t] и [r]) и она

означает наличие либо одной, либо двух болезней или их отсутствие.


Рис.2. Представление фрагмента модели медицинской БЗ в виде БСД.

Важное понятие байесовской сети доверия – это условная независимость случайных переменных, соответствующих вершинам графа. Две переменные A и B являются условно независимыми при данной третьей вершине C, если при известном значении C, значение B не увеличивает информативность о значениях A, то есть

p ( A | B, C ) = p ( A | C ) .

Если имеется факт, что пациент курит, то мы устанавливаем наши доверия относительно рака и бронхита. Однако наши доверия относительно туберкулёза не изменяются. То есть [t] условно не зависит, от [k] при данном пустом множестве переменных

p ( t | k ) = 0

Поступления положительного результата рентгена пациента повышают наши доверия относительно туберкулёза и рака, но не относительно бронхита. То есть [b] – условно не зависит от [x] при данном k

p ( b | x, k ) = p ( b | k )

Однако, если бы знали также, что у пациента учащённое дыхание [o], то рентгеновские результаты также имели бы воздействие на наше доверие относительно бронхита. То есть [b] условно зависит от [x] при данных o и k. Таким образом, логический вывод в БСД означает вычисление условных вероятностей для одних переменных при наличии информации (свидетельств) о других. При этом для распространения вероятностей используется теорема Байеса.

Замечание о субъективных вероятностях и ожидания.



Исчисление вероятностей формально не требует, чтобы использованные вероятности базировались на теоретических выводах или представляли со­бой пределы эмпирических частот. Числовые значения в байесовых сетях могут быть также и субъективными, личностными, оценками ожиданий экспертов по поводу возможности осуществления событий. У разных лиц степень ожидания (надежды или боязни — по Лапласу) события может быть разной, это зависит от индивидуального объема априорной инфор­мации и индивидуального опыта.

Предложен оригинальный способ количественной оценки субъектив­ных ожиданий. Эксперту, чьи ожидания измеряются, предлагается сделать выбор в игре с четко статистически определенной вероятностью альтерна­тивы—поставить некоторую сумму на ожидаемое событие, либо сделать такую же ставку на событие с теоретически известной вероятностью (на­пример, извлечение шара определенного цвета из урны с известным содер­жанием шаров двух цветов). Смена выбора происходит при выравнивании степени ожидания эксперта и теоретической вероятности. Теперь об ожи­дании эксперта можно (с небольшой натяжкой) говорить как о вероятности, коль скоро оно численно равно теоретической вероятности некоторого дру­гого статистического события.

Использование субъективных ожиданий в байесовых сетях является единственной альтернативой на практике, если необходим учет мнения экспертов (например, врачей или социологов) о возможности наступления события, к которому неприменимо понятие повторяемости, а также невоз­можно его описание в терминах совокупности элементарных событий.

Синтез сети на основе априорной информации.



Как уже отмечалось, вероятности значений переменных могут быть как физическими (основанными на данных), так и байесовыми (субъективны­ми, основанными на индивидуальном опыте). В минимальном варианте полезная байесова сеть может быть построена с использованием только априорной информации (экспертных ожиданий).Для синтеза сети необходимо выполнить следующие действия:

  1. сформулировать проблему в терминах вероятностей значений целе­вых переменных;

  2. выбрать понятийное пространство задачи, определить переменные,

  3. имеющие отношение к целевым переменным, описать возможные

  4. значения этих переменных;

  5. выбрать на основе опыта и имеющейся информации априорные ве­роятности значений

  6. переменных;

  7. описать отношения «причина-следствие» (как косвенные, так и пря­мые) в виде

  8. ориентированных ребер графа, разместив в узлах пере­менные задачи;

  9. для каждого узла графа, имеющего входные ребра указать оценки

  10. вероятностей различных значений переменной этого узла в зависи­мости от комбинации

  11. значений переменных-предков на графе.


Эта процедура аналогична действиям инженера по знаниям при постро­ении экспертной

системы в некоторой предметной области. Отношения зависимости, априорные и условные

вероятности соответствуют фактам и правилам в базе знаний ЭС.

Построенная априорная байесова сеть формально готова к использова­нию. Вероятностные

вычисления в ней проводятся с использованием уже описанной процедуры маргинализации

полной вероятности.

Дальнейшее улучшение качества прогнозирования может быть достиг­нуто путем обучения байесовой сети на имеющихся экспериментальных данных. Обучение традиционно разделяется на две составляющие — вы­бор эффективной топологии сети, включая, возможно, добавление новых узлов, соответствующих скрытым переменным, и настройка параметров условных распределений для значений переменных в узлах.

Пример использования Байесовых сетей



Естественной областью использования байесовых сетей являются эксперт­ные системы,

которые нуждаются в средствах оперирования с вероятностя­ми.


Медицина



Система PathFinder (Heckerman, 1990) разработана для диагностики забо­леваний лимфатических узлов. PathFinder включает 60 различных вариан­тов диагноза и 130 переменных, значения которых могут наблюдаться при изучении клинических случаев. Система смогла приблизиться к уровню экспертов, и ее версия PathFinder-4 получила коммерческое распростране­ние.

Множество других разработок (Child, MUNIN, Painulim, SWAN и др.) успешно применяются в различных медицинских приложениях .


Космические и военные применения



Система поддержки принятия решений Vista (Eric Horvitz) применяется в Центре управления полетами NASA (NASA Mission Control Center) в Хью­стоне. Система анализирует телеметрические данные и в реальном времени идентифицирует, какую информацию нужно выделить на диагностических дисплеях.

В исследовательской лаборатории МО Австралии системы, основанные на байесовых сетях, рассматриваются, как перспективные в тактических задачах исследования операций. Модель включает в себя раз­личные тактические сценарии поведения сторон, данные о передвижении судов, данные разведнаблюдений и другие переменные. Последовательное поступление информации о действиях противников позволяет синхронно прогнозировать вероятности различных действий в течение конфликта.