Файл: Лекции Концептуальные положения начального математического образования.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 252
Скачиваний: 7
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Лекция 1. Общие вопросы обучения младших школьников математике
1.1. Концепция современного начального математического образования
План лекции
-
Концептуальные положения начального математического образования -
Современные концепции вариативных образовательных систем и учебно-методических комплектов
1. Концептуальные положения начального математического образования
Математика есть часть общего образования. Ни одна область человеческой деятельности не может обходиться без математических знаний и интеллектуальных качеств, развивающихся в ходе овладения этим учебным предметом. Школьное математическое образование способствует:
-
овладению конкретными знаниями, необходимыми для ориентации в современном мире и для продолжения образования; -
приобретению навыков логического, алгоритмического и критического мышления; -
формированию мировоззрения, обеспечивающего понимание взаимосвязи математики с действительностью, владение математическими методами для познания действительности.
Приоритетным направлением новых образовательных стандартов является реализация развивающего потенциала общего среднего образования. Роль математики в реализации развивающего потенциала образования определена в концепции математического образования, принятой в 2014 г. [44]. Основные положения этой концепции базируются на идее личностно ориентированного обучения и направлены на осуществление в процессе обучения математике гармоничного сочетания интересов личности и общества. В концепции четко обозначен факт сосуществования в методической системе обучения математике двух генеральных функций школьного математического образования: образование с помощью математики и собственно математическое образование.
В сложившейся системе школьного математического образования функция собственно математического образования является доминирующей, что, нередко, приводит к сомнениям в необходимости изучения математики, особенно, на старшей ступени школы. Идеи личностно-ориентированного обучения также требуют пересмотра значимости этой функции с учетом современной социальной ситуации.
В контексте образования с помощью математики образовательная область «Математика» выступает как предмет общего образования. В соответствии с этой функцией главной задачей обучения математике становится не изучение основ математической науки как таковой, а общее интеллектуальное развитие – формирование у учащихся в процессе изучения математики качеств мышления, необходимых для полноценного функционирования человека в современном обществе, для динамичной адаптации человека к этому обществу Соответствующая функция математики названа общеобразовательной.
Социальная значимость собственно математического образования обусловлена необходимостью поддержания и повышения традиционно высокого уровня изучения математики, сложившегося в отечественной школе для формирования будущего кадрового научно-технического, технологического потенциала российского общества, то есть в контексте собственно математического образования образовательная область «Математика» выступает в качестве учебного предмета специализирующего характера. Обучение математике рассматривается как элемент профессиональной подготовки учащихся к соответствующим областям деятельности после окончания школы, в том числе к получению высшего образования по соответствующим специальностям. Такая функция математики названаспециализирующей.
Наряду с обозначениемдвух генеральных функций школьного математического образования, в концепции выделяются уровни математической подготовки.
-
Общий или базовый уровень подготовки, необходимой для повседневной жизни, который должен включать важнейшие элементы курса математики, представляющие особую ценность для развития интеллекта и формирования мировоззрения обучающихся. -
Прикладной или профильный уровень – это то, чем должны обладать, будущие инженеры, технологи, экономисты и специалисты других профессий, которым предстоит применять математику в своей работе. -
Творческий уровень – это уровень подготовки будущих ученых и исследователей.
В начальной и основной школе математика является предметом общего образования и здесь выделяется два уровня – базовый и повышенный. В старшей школе предполагается частичная профессиональная ориентация учащихся и профилированные курсы математики, носящие специализирующий характер, переносятся в старшую школу. Таким образом, центральным тезисом концепции выделяется «уровневая» и «профильная» дифференциация обучения как в наибольшей степени соответствующая современным идеям российской и мировой педагогики и психологии.
С учетом гуманитарной ориентация обучения математике и понимания безусловной необходимости приобретения всеми учащимися определенного объема конкретных математических знаний и умений, цели школьного математического образования формулируются следующим образом:
-
интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценной жизни в обществе; -
формирование представлений о математике как части общечеловеческой культуры, понимания значимости математики для общественного прогресса. -
формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности; -
овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образовании.
Иначе говоря, в процессе обучения математике каждый ученик должен овладеть комплексом математических знаний, умений и навыков, необходимых для повседневной жизни и для профессиональной деятельности, содержание которой не требует использования математических знаний и для продолжения изучения математики в любой из форм непрерывного образования.
Ориентация образования не только на усвоение определённой суммы знаний, но и на развитие личности, обусловило включение в планируемые результаты образования существенного блока универсальных учебных действий: личностных, познавательных, регулятивных и коммуникативных.
В соответствии с новым стандартом [92] концептуальной основой обучения становится системно-деятельностный подход, который включает в себя реализацию идей системного, деятельностного и личностного подходов и позволяет реализовать основные положения концепции развития математического образования.
Сущность системного подхода заключается в том, что относительно самостоятельные компоненты учебного процесса рассматриваются не изолированно, а в их взаимосвязи, в системе с другими. При системном подходе педагогическая система обучения математике рассматривается как совокупность взаимосвязанных компонентов (цель математического образования в начальных классах, субъекты педагогического процесса, содержание образования, методы, формы, средства обучения), нацеленных на достижение основной цели образования – формирования личности с четкой направленностью на самопознание, саморазвитие и самореализацию.
Деятельностный подход позволяет рассматривать учебную деятельность как совместную, продуктивную деятельность педагога и ребёнка на основе сотрудничества. Для того чтобы деятельность носила развивающий характер, она должна отвечать потребностям, интересам и целям обучающегося, должна осознаваться ребёнком.
Личностный подход утверждает представления о социальной, деятельной и творческой сущности человека как личности и означает ориентацию при планировании и осуществлении педагогического процесса на личность как цель, субъект, результат и главный критерий его эффективности. Он требует признания уникальности личности, её интеллектуальной и нравственной свободы, право на уважение. В рамках данного подхода предполагается опора в воспитании на естественный процесс саморазвития задатков и творческого потенциала личности, создания для этого соответствующих условий.
Современное математическое образование базируется на следующей совокупности принципов:
-
непрерывность, предполагающая изучение математики на протяжении всех лет обучения в школе; -
принцип научности, требующий отбора математических знаний, соответствующих математической науке; -
преемственность, предполагающая взвешенный учет положительного опыта, накопленного отечественным математическим образованием, и реалий современного мира; -
вариативность методических систем, предусматривающая возможность реализации одного и того же содержания на базе различных научно-методических подходов; -
дифференциация, позволяющая учащимся на всем протяжении обучения получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями (уровневая дифференциация) и предусматривающая возможность выбора типа математического образования в старшем звене (профильная дифференциация); -
принцип активности, предполагающий использование таких методов и приёмов обучения, которые ставят ребёнка в активную позицию, включение их в процесс получения и самостоятельного использования полученных математических знаний.
Перечисленные принципы создают предпосылки для гармоничного сочетания в обучении интересов личности и общества, для реализации в образовательной практике важнейшей идеи современной педагогики – личностной ориентации математического образования.
2. Современные концепции вариативных образовательных систем и учебно-методических комплектов
В начальном математическом образовании реализуется несколько образовательных систем обучения и достаточно большое число альтернативных учебно-методических комплектов (далее УМК). После утверждения и внедрения федерального государственного образовательного стандарта начального общего образования второго поколения (далее ФГОС) [92] все УМК прошли доработку в плане совершенствования и обновления содержания начального математического образования в соответствие с идеями нового стандарта и концепции математического образования. В то же время, каждый учебно-методический комплект и тем более образовательная система строится на определенных концептуальных положениях. В связи с чем, содержание обучения, методический аппарат учебных дисциплин, средства ориентировки для учителя и учеников в пособиях выстраиваются в четком соответствии с требованиями ФГОС и концептуальными положениями, особенностями образовательной системы или УМК.
Основная направленность образовательной системы Л.В. Занкова – достижение оптимального общего развития младших школьников [32]. Концепция сформулирована в 60-е годы XX века. Основополагающими в ней остаются следующие положения.
Во-первых, развитие психической деятельности включает три линии: ум, волю и чувства. Развитие мыслительной деятельности предполагает классификацию предметов и понятий: анализ условий задач и заданий, формулировку выводов. Формирование обобщений ориентируется как на индуктивный, так и на дедуктивный путь в зависимости от характера знания.
Знания, умения и навыки выступают в роли средств обучения и средств организации процесса обучения. Основные требования к содержанию, методам, формам, результативности системы отвечают ее основной идее – идее создания условий для оптимального общего развития ребенка.
Результат достигается использованием развивающей методики – открытие нового знания через проблемную ситуацию (коллизию), использование многообразия методов. Автором учебника математики в данной системе является И.И. Аргинская. Содержание математического образования в данной системе направлено на реализацию следующих задач:
-
способствовать продвижению ученика в общем развитии, становлению нравственных позиций личности ребенка, не вредить его здоровью; -
дать представление о математике как науке, обобщающей существующие и происходящие в реальной жизни явления и способствующей тем самым познанию окружающего мира, созданию его широкой картины; -
сформировать знания, умения и навыки, необходимые ученикам в жизни и для успешного продолжения обучения в основном звене школы.
Основные принципы системы, которые реализуются и через математическое образование предусматривают:
-
обучение на высоком уровне трудности с соблюдением меры трудности; -
ведущую роль теоретических знаний; -
быстрый темп прохождения учебного материала; -
осознание школьниками процесса учения; -
систематическую работу над развитием всех учащихся, включая слабых; -
постоянную заботу о психическом и физическом здоровье всех учащихся.
Основной путь познания курса математики – индуктивный; новое знание открывается через проблемную ситуацию («коллизию»); в процессе обучения у школьников формируется активная личностная позиция к математике (математическим фактам, явлениям, понятиям, закономерностям, ситуациям практического применения знаний и умений).