ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.04.2024
Просмотров: 344
Скачиваний: 0
СОДЕРЖАНИЕ
Основные теоретические сведения
Краткая теория вопроса и метода.
Описание метода гидростатического взвешивания.
Краткая теория вопроса и метода измерения.
Краткая характеристика методов.
Описание экспериментальной установки.
Краткое знакомство и машиной Атвуда.
Описание прибора и теория метода.
Алгоритм обработки результатов многократных измерений.
Также, есть и точки с максимальной амплитудой – пучности. Расстояние между двумя соседними неподвижными точками (узлами), или между соседними пучностями, равно половине длины проходящей волны.
Вблизи узлов имеет место максимум деформации, а значит и максимум потенциальной энергии. Вблизи пучностей стоячей волны находятся пучности скорости, а значит максимальна энергия кинетическая. Т.о. дважды за период происходит переход энергии от каждого узла к соседним с ним пучностям и обратно. В случае стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Полная энергия стоячей волны, заключенная между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных , происходят взаимные превращения кинетической энергии в потенциальную и обратно.
Скорость звука как волны.
Звуковые волны имеют частоты в пределах 16-20 000 Гц. Источником звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой.
В истории развития физических знаний известны различные формулы, по которым определялась в разные времена скорость звука :
1) формула Ньютона (6) – выводится в предположении, что процесс распространения звука в газе можно считать изотермическим; здесь- давление газа,- плотность газа; ее результаты расходятся с экспериментом.
2) формула Лапласа (7) или, где- термодинамический коэффициент, равный отношению удельных теплоемкостей газа; формула выводится на основе утверждения, что процесс распространение акустических волн являетсяадиабатическим; формула (7) соответствует опытным данным.
Т.к. плотность газа зависит от температуры: , где- плотность газа при 00С, t – температура в 0С, - коэффициент расширения газа (), следовательно,
(8).
При 00С скорость звука в воздухе =331,5 м/с.
Что же представляет собой скорость звука? Скорость звука есть скорость распространения упругих колебаний в среде – твердой, жидкой или газообразной.
Пусть резким движением поршня в трубе вы создали уплотненный слой воздуха. А потом вернули поршень в первоначальное положение. Подобно сжатой пружине, слой воздуха начнет расширяться в обе стороны, заполняя образовавшееся разрежение слева и вызывая сгущение справа. Таким образом сгущение будет перемещаться вдоль оси трубы все правее и правее. Распространяется сгущение, а не частицы воздуха. От одного конца трубы до другого. Каждая частица лишь колеблется влево-вправо около положения равновесия. Скорость распространения сгущенного состояния и будет скоростью распространения упругой деформации среды..
Если периодически повторять движение поршня вперед и назад, то в воздушной среде образуется ряд последовательных сгущений и разряжений, бегущих вдоль оси трубы. Такое движение называется волновым.
Расстояние от одного сгущенного состояния до следующего, т.е. расстояние между двумя последовательными точками среды, находящимися в одной фазе, называется длиной волны, а число волн, проходящих через точку в 1 с, - частотой колебательного движения .
Для звуковых волн частота звука является характеристикой звукового ощущения, известного под названием высоты звука или тона (до, ре, ми и т.д.). чем больше частота, тем выше тон.
Сила звука данного источника объективно определяется мощностью колебаний и пропорциональна квадрату их амплитуды.
Однако при субъективной оценке громкости звука играет роль и высота звука, так что звуки. Значительно отличающиеся по высоте, дают разные ощущения громкости.
По длине и частоте волны можно вычислить скорость звука:(9).
В теории волн различают понятия фазовой и групповой скорости. Первая равна скорости распространения фазы в пространстве (рис.2). Это – только математическое понятие.
Также как нельзя практически выделить строго монохроматический луч света с соответствующей ему строго определенной длиной волны, а всегда приходится иметь дело с пучком, представляющим собой смесь близко расположенных длин волн, так нельзя и получить звуковой волны строго определенной частоты. Кроме того, для передачи сигнала волна должна быть модулирована: необходимо, чтобы были разрывы и изменения амплитуды. При распространении звука такая модуляция происходит всегда: всякий источник звука посылает не одну волну строго определенной частоты, а несколько, хоть немного отличающихся друг от друга, волн. Как известно, при \том происходит интерференция, приводящая к биениям: волна разбивается на отдельные участки – пакеты. Энергия концентрируется в местах наибольших амплитуд и может восприниматься ухом или другим приемником как определенный сигнал. При этом в некоторых случаях максимум перемещается по пакету со скоростью, отличной от фазовой (рис.3).
Скорость сигнала или скорость звука есть скорость распространения подобных групп волн и поэтому называется групповой скоростью. С этой скоростью распространяется и энергия звука.
Для звуковых волн в воздухе и в воде групповая и фазовая скорости одинаковы. Это вызвано тем, что скорость звука, являясь скоростью распространения упругих деформаций среды, не зависит от частоты. Звуки любого типа распространяются одинаково. Разница лишь в громкости. Т.е. для звуковых волн не наблюдается дисперсия. Поэтому не оговаривают о фазовой или групповой скорости идет речь, а говорят просто о скорости звука.
Описание метода.
Генератор звуковых волн ЗГ-2, соединенный с микрофоном, генерирует в последнем волны установленной на приборе частоты. Микрофон установлен в одном основании цилиндрической металлической трубки и служит местом (точкой) возникновения звуковых волн, распространяющихся далее по трубке. Другим основание цилиндра служит поверхность поршня. Перемещая поршень по трубке, мы меняем расстояниеиз формулы (8). Когда телефон по отношению к поршню (место отражения волны. т.е. начальный узел) занимает положение, соответствующее точке с максимальным (нулевым) значением амплитуды, мы слышим максимальную (нулевую) громкость звука.
Вопросы к допуску.
Что представляет собой стоячая волна? Как она образуется? Как ее длина волны связана с длиной исходной проходящей волны?
Какую область занимает стоячая волна в данном эксперименте?
Где начинается отраженная волна? Какова ее начальная фаза?
Запишите зависимость амплитуды колебания точки стоячей волны от ее расстояния до источника волн? Поясните входящие в формулу обозначения.
Как связана длина проходящей волны с расстоянием между соседними пучностями?
Чем определяется величина длины проходящей волны, исследуемой в опыте?
Чем нужно руководствоваться при выборе частоты звука на генераторе?
Каково условие максимальной слышимости звука в данном опыте? Сделать схематический чертеж взаимного расположения частей экспериментальной установки и рисунок соответствующей стоячей волны (подобно рис.1). Аналогично для момента отсутствия слышимости.
От чего зависит скорость звука в газе?
От чего зависит величина получаемого в нашем опыте значения скорости звука?
Привести и пояснить расчетные формулы для длины звуковой волны и для скорости звука, используемые в данной работе.
Выполнить задание 1.
Какая характеристика звука меняется при вращении ручки регулятора выходного напряжения?