ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.04.2021

Просмотров: 343

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

Page 20 of 57

Accepted Manuscript

20

1

)

exp(

1

)

/

exp(

0

0

k

k

k

L

k

k

k

P

L

x

P

C

C

C

C

 (56)

where

RT

FL

z

D

L

U

P

k

k

k

k

(57)

P

k

  is  the  analog  of  the  Peclet  number  (from  the  theory  of  convective  mass  transfer)  for 

k

-th 

defect.  We see that 

P

k

 is the ratio of the intensity of migration to that of diffusion.

As follows from Equation (57), for 

P

k

>> 1, migration dominates in the positive direction 

and practically in all of the volume of the barrier layer, and hence we have with great accuracy 

0

k

k

C

C

  with  the  exception  of the  very  thin  transient  area near 

x  =  0

  (bl/ol  interface).    In the 

opposite  case,  for 

P

k

<<  -1,  migration  dominates  in  negative  direction  and  practically  in  all 

volume of the barrier layer we have with great accuracy 

L

k

k

C

C

 with the exception of the very 

thin transient region near 

x

 = 

L

 (m/bl interface).  

Let us consider the case of metal interstitials (

k

= 1).  If, for example, χ = 3,  



 2.3

10

6

V/cm, 

T

 = 295 K, 

 10

-5

cm Equation (57) yields 

P

1

≈ 

- 1810, i.e. 

P

1

 has a large, negative value 

and with great accuracy

L

C

C

1

1

, with the exception of the very thin transient area near the bl/ol 

interface  (with  the  thickness  ~  10

-3

L

),  where  the  concentration  changes  sharply  with  distance.  

Accordingly, for the partial cation interstitials flux density, we have:

L

L

C

RT

FD

C

U

k

const

J

1

1

1

1

2

1

(58)

and, for the concentration of cation interstitials inside the barrier layer we have:


background image

Page 21 of 57

Accepted Manuscript

21

i

i

L

i

i

FD

RT

k

FD

RT

k

C

C



2

2

(59)

Please, note  that,  in  the  coordinate  system  used  here (increasing x  from right  to  left), with the 

origin at the barrier layer/solution interface, 

> 0.

By analogy, for cation vacancies (z

2

 = -

χ, 

J

= k

4

) we have: 

FD

RT

k

C

C

4

0

(60)

and for oxygen vacancies (z

3

 = 2, 

J

=(

χ/2)

 k

3

) we find:

o

L

o

o

FD

RT

k

C

C

4

3

(61)

If, for example, Equation (52) holds, electronic conductivity of the film is: 

e

e

e

FC

 (58)

and, in accordance with Bojinov [42-44], the electronic conductivity of the barrier layer is:

o

e

i

e

e

e

e

D

D

k

F

D

D

Fk

FC

2

3

2

(59)

It was shown above that, with great accuracy, the electronic conductance does not depend 

on the position in the film.  Accordingly, Equation (50) can be simplified to yield 

ˆ

ˆ

0

j

L

Z

e

e

(60)

Equations (59) and (60) allow us to estimate the electronic impedance.


background image

Page 22 of 57

Accepted Manuscript

22

It must be noted that electronic impedance can be measured, but only in conjunction with 

the reaction impedance represented by Randles circuit (see Figure 3).  

Figure 3.

 (Randles circuit)

It is evident that Randles Impedance can be described by the following equation.



b

R

R

b

O

O

C

D

C

D

A

F

n

Rt

Z

2

1

2

1

2

2

1

1

|

|

(61)

C

j

Z

Z

1

C

1

R

(62)

where

2

1

2

1

s

s

ct

C

j

R

Z

  , 

s

is  the  Warburg  coefficient  for  semi-infinite  diffusion  in 

solution, and 

R

ct

 is the charge transfer resistance of the redox reaction.  The Warburg coefficient, 

s

is given by: 





R

R

O

O

s

C

D

C

D

F

n

RT

2

/

1

2

/

1

2

2

1

1

2

(63)

where 

C

O

 and 

C

R

 are the bulk concentrations of oxidized and reduced components, respectively, 

of the redox couple and 

D

O

 and 

D

R

 are the corresponding diffusion coefficients. 

Our calculations show that, due to the extremely low concentration of the oxygen in the 

system (1 ppb), the leading cathodic reaction in the system is water reduction, i.e.

OH

H

e

O

H

2

2

2

1

 (64)


background image

Page 23 of 57

Accepted Manuscript

23

It  is  evident  that  this  reaction,  in  the  written  direction,  has  no  diffusion  limitation,  and 

accordingly we can neglect the Warburg Impedance (

Z

w

≈ 0).

On the other hand, the current density corresponding to Reaction (64) is:





RT

FE

B

i

O

H

2

exp

 (65)

where

O

H

2

  is  transfer  coefficient  of  Reaction  (64)  and  coefficient 

B

  depends  on  pH  and  the 

temperature (but not on potential 

E

).  Accordingly, we have:

Fi

RT

RT

FE

exp

/

FB

RT

E

i

R

O

H

O

H

O

H

1

ct

2

2

2





 (66)

For example, calculations performed by using OLI commercial software [46] yields 

B

 = 3.92×10

-

11

 A/cm

2

 (

E

 is measured relative to the 

SHE

 electrode) and 

5

.

0

2

O

H

at pH = 8.15 and 

T

 = 21 

o

C and calculations yield 

R

ct 

= 0.308×10

10

Ω.cm

2

 at 

E

 = 0.044 (

SHE

) and 

R

ct 

= 0.5938×10

14

Ω.cm

2

at 

E

 = 0.544 (

SHE

).

For the case of 

Z

w

≈ 0, the Randles impedance has the form:

1

1

C

j

R

Z

ct

R

 (67)

and the total (parallel) impedance of our system has the form:

''

'

1

0

1

ˆ

ˆ

jZ

Z

C

j

R

j

L

Z

Z

Z

ct

e

R

e

  (68)


background image

Page 24 of 57

Accepted Manuscript

24

2

2

1

2

0

2

'

)

(

)

ˆ

ˆ

(

C

R

R

L

Z

ct

ct

e

e

 (69)

and

2

2

ct

1

ct

2

0

2

e

0

''

)

C

(

R

C

R

)

ˆ

ˆ

(

ˆ

ˆ

L

Z

 (70)

By using Equations (68) to (70) and Equation (66) for 

R

ct

, we can easily calculate the modulus:

2

2

r

e

Z

Z

Z

(71)

and the phase angle:





'

''

Z

Z

arctg

(72)

As noted above, the electronic impedance in parallel with the barrier layer is a complex 

number  [Equation  (68)],  which  yields  real  [Equation  (69)]  and  imaginary  [Equation  (70)] 

components,  as  well  as  a  modulus  [Equation  (71)]  and  phase  angle  [Equation  (72)],  all  as  a 

function  of  frequency.    Because  the  real  and  imaginary  components  are  frequency-dependent, 

they must be incorporated into the optimization procedure.  

Figures  4  to  6  show  typical  Nyquist  and  Bode  plots  for  the  parallel  impedance  for  the 

case of iron in borate buffer solution [0.3 M 

H

3

BO

3

 / 0.075  M 

Na

2

B

4

O

7

, as appropriate] + 0.001 

EDTA

 [Ethylenediaminetetraacetic acid, 

EDTA

, disodium salt], pH = 8.15, 

T

 = 21 

o

C and 

E

 = 

0.044 V (

SHE

).  The parameter values used in the calculations are given in Table 2.

Table 2

 (Parameter values).