Файл: Методическое пособие по выполнению контрольной работы по дисциплине Генетика человека с основами медицинской генетики.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 357

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


3. Задача: Фрагмент молекулы ДНК состоит из нуклеотидов, расположенных в следующей последовательности: ТАААТГГЦААЦЦ. Определите состав и последовательность аминокислот в полипептидной цепи, закодированной в этом участке гена.


Вариант 9

1.Основы молекулярной генетики

2.Близнецовый и цитогенетический методы изучения наследственных болезней.
Задача: От родителей, имеющих по фенотипу нормальное цветовое зрение, родилось несколько детей с нормальным зрением и один мальчик дальтоник. Чем это объяснить? Каковы генотипы родителей и детей?

Вариант 10

1.Взаимодействие генотипа и среды.

2.Наследственные заболевания сцепленные с полом.
Задача: Кареглазая женщина с нормальным зрением выходит замуж за кореглазого мужчину. У них родилась дочь –дальтоник. Карий цвет глаз доминирует над голубым, а дальтонизм определяется рецессивным геном, находящимся в Х-хромосоме. Какова вероятность того, что следующий ребёнок в этой семье будет иметь такой же фенотип?.

ВНИМАНИЕ !!!

После теоретической части, есть практические занятия часть 3.Выполнять все задания обязательно!!!

Задание практических работ (№7,№8),где указаны варианты, выполняются согласно таблице по первой букве фамилии


II вариант

А

В

Д

Ж

И

Л

Н

П

С

У

Х

Ч

Щ

Ю

Ё

I вариант

Б

Г

Е

3

К

М

О

Р

Т

Ф

Ц

Ш

Э

Я





Часть вторая теоретическая

Тема . История развития генетики как фундаментальной науки.

Методы исследования генетики человека
Вопросы

1. История развития генетики как фундаментальной науки.

1.1 Общее представление о генетике как о науке.

1.2 Основные этапы развития генетики: классический период

2. Методы исследования генетики человека.

2.1 Генеалогический метод.

2.2 Близнецовый метод.

2.3. Цитогенетический метод.

2.4. Биохимический метод.
1. История развития генетики как фундаментальной науки

1.1. Общее представление о генетике как науке

Генетика человека – наука о наследственности и изменчивости человека.

Наследственность – это способность живых организмов сохранять и передавать из поколения в поколение признаки и свойства организма.

Изменчивость – это способность живых организмов в процессе онтогенеза утрачивать старые и приобретать новые признаки и свойства.

1.2. Основные этапы развития генетики человека

1900 г. – начало бурного развития генетики как науки – вторичное открытие законов Менделя тремя учеными независимо друг от друга: де Фриз (Голландия), Корренс (Австрия), Чермак (Германия).

Г. Мендель открыл закономерности наследования признаков в 1865 г. и опубликовал на немецком языке в трудах общества естествоиспытателей по названием «Опыты над растительными гибридами».

1900 – 1930 гг. – классический период развития генетики (этап менделизма и хромосомной теории наследственности).

1930 – 1940 гг. – период индуцированного мутагенеза (получение мутаций с помощью радиации и химических веществ).

1940-1953 – 2000 гг. – период молекулярной генетики (изучение структуры и функциональной природы молекул ДНК).

1953 г. – Уотсон и Крик расшифровали структуру молекулы ДНК.

2000 г. – полностью расшифрован генетический код человека – он полностью может быть записан с помощью химических формул.

после 2000 г. – современный этап – основное направление – структурно-системное познание глубинной сущности гена.
2. Методы исследования генетики человека



2.1. Генеалогический метод (метод родословных)

Предложен Гальтоном в 1865 г. Задачи метода:

– установления наследственного характера болезни;

– определения типа ее наследования;

– изучение сцепления болезни с различными генетическими маркерами.

Методика составления родословной

1. Сбор родословной начинается с пробанда – больного ребенка (человека). Если это взрослый сразу собирают информацию о его детях, затем братьях и сестрах (сибсах) с учетом последовательности беременностей у матери и их сходах .

2. Сбор сведений обо всех кровных родственниках по материнской линии.

3. Сбор сведений обо всех кровных родственниках по отцовской линии.

К родословной предлагается легенда.

Каждое поколение изображается на одной линии и обозначается римскими цифрами сверху вниз.

Символы, используемые при составлении родословной (предложены Юстом в 1931 г.)


2.2. Близнецовый метод

Предложен Гальтоном в 1876 г. Задачи метода:

– установить роль наследственности и среды в фенотипическом разнообразии различных признаков у человека.

Этапы реализации метода:

1. Сбор близнецового материала и диагностика зиготности (метод «сходства-подобия», по эритроцитарным и лейкоцитарным маркерам, ДНК- диагностика).
2. Анализ близнецовых данных.

Установление коэффициента парной конкордантности, который указывает на относительное число пар, в которых оба партнера несут изучаемый признак. Вычисляется отдельно для МЗ и ДЗ близнецов.

К= С/ С+Д

С – число конкордантных пар (сходных);

Д – число дисконкордантных пар (различающихся).

К выражается либо в долях еденицы, либо в процентах

Далее вычисляют долю наследственной обусловленности признака – наследуемость (Н), которая также выражается в процентах или долях еденицы.

Н= К МЗ– К ДЗ / 1 (или 100 если в %) – К ДЗ

К МЗ и К ДЗ – коэффициенты парной конкордантности МЗ и ДЗ близнецов.

1– 0,7 – признак (болезнь) детерменируется генетическими факторами

0,4 – 0,7 – болезнь с наследственной предрасположенностью, реализующаяся под влиянием средовых факторов.

0 – 0,4 – болезнь, возникшая под влиянием окружающей среды.

2.3. Цитогенетический метод


Проводится при подозрении не хромосомную болезнь. Задачи:

– идентифицировать перестроенную хромосому;

– установить тип хромосомной перестройки.

препараты хромосом человека можно приготовить из фибробласток кожи, костного мозга, но наиболее доступной при таких исследованиях является культура лимфоцитов периферической крови (кровь помещают в специальную среду с веществами стимулирующими рост и клеточное деление, затем добавляют колхицин, что приводит к остановке митоза на стадии метафазы, в которой хромосомы мах спирализированы).

2.4. Биохимический метод

применяют при подозрении на врожденные дефекты обмена. Применяют их в 2 этапа:

– скринирующие экспресс-методы, позволяющие обследовать большие группы населения (например, микробиологический тест Гатри (как вариант тест Фелинга) для обследования всех новорожденных на фенилкетонурию;

– более сложные методы биохимии и молекулярной биологии – методы фракционирования и количественного анализа, жидкостной и газовой хромотографии.


Литература

  1. Асанов, А.Ю. Медицинская генетика / А.Ю. Асанов, Н.П. Бочков, Н.А. Жученко. – М.: ГЭОТАР-мадиа, 2008. – 230 с.

  2. Заяц, Р.Г. Основы общей и медицинской генетики / Р.Г. Заяц,
    И.В. Рачковская. – Минск: Вышэйшая школа, 2003. – 232 с.

  3. Мастюкова, Е.М. Основы генетики. Клинико-генетические основы коррекционной педагогики и специальной психологии / Е.М. Мастюкова, А.Г. Московкина. – М.: Владос, 2001. – 367 с.

Тема. Основы молекулярной генетики
Вопросы

1.Строение и функции белка.

2.Структурная модель ДНК Дж. Уотсона и Ф. Крика.

3.Транскрипция. Процесс трансляции у эукариот.

4. Сравнительная характеристика ДНК и РНК.

5.Генетический код. Свойства генетического кода.
1. Строение и функции белка

Белки играют важнейшую роль в жизнедеятельности любых организмов. Многообразие и сложность живой материи, по сути дела, отражают многообразие и сложность самих белков. Каждый белок имеет свою уникальную функцию, которая определяется присущими ему структурой и химическими свойствами. Некоторые белки являются ферментами, т.е. катализаторами биохимических реакций в живых организмах. Каждая химическая реакция катализируется определенным ферментом. Без участия ферментов подобные реакции не происходят вовсе, или протекают крайне медленно, что бы обеспечить саму возможность существования живых организмов. Другие белки –
структурные – выполняют в организме роль строительных белков – или сами по себе (например, коллаген), или в комплексе с нуклеиновыми кислотами (нуклеопротеины), углеводами (гликопротеины) или липидами (липопротеины). Некоторые белки, вовлеченные в систему запаса и транспорта кислорода, связываются с функционально важными металлосодержащими органическими молекулами. Так, например, миоглобин и гемоглобин специфически связывают железосодержащую группировку, называемую гемом.

Белки – это большие полимерные молекулы, построенные из мономерных аминокислотных звеньев. В состав белков входят двадцать различных видов аминокислот. Все белковые аминокислоты (за исключением пролина) характеризуются общей структурой (рис. 1), обязательными элементами которой являются: аминогруппа, карбоксильная группа, водород и какой-либо радикал.





Рис. 1 Структурная формула аминокислот.

NH2 – аминогруппа; COOH – карбоксильная группа; (H – атом водорода); радикал R – боковая группа.


Аминокислоты в белках связаны между собой прочными ковалентными пептидными связями, возникающими между карбоксильной группой одной аминокислоты и аминогруппой следующей кислоты. Образующийся в результате такого взаимодействия олигомер называют пептидом. Аминокислоты, входящие в состав пептида часто называют аминокислотными остатками (табл.1). Структурную основу любого пептида составляет зигзагообразный остов, образованный атомами углерода и азота.

Таблица 1

Классификация аминокислот по природе боковых групп

Природа боковой группы

Название аминокислоты

Сокращение

Нейтральные

глицин

гли

Неполярные ароматические

триптофан

три

фенилаланин

фен

тирозин

тир

Неполярные серосодержащие

метионин

мет

цистеин

цис

Неполярные алифатические

аланин

ала

лейцин

лей

валин

вал

изолейцин

иле

пролин

про

Полярные, содержащие ОН-группу

серин

сер

треонин

тре

Полярные амиды

аспарагин

асн

глутамин

глн

Полярные «–» заряженные

аспарагиновая кислота

асп

глутаминовая кислота

глу

Полярные «+» заряженные

гистидин

гис

лизин

лиз

аргинин

арг