ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.10.2023
Просмотров: 367
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
МОДУЛЬ 1. Предметная область метрологии
МОДУЛЬ 2. ШКАЛЫ И ПРИМЕНЕНИЕ ИХ В МЕТРОЛОГИИ
МОДУЛЬ 3. Физические величины, системы единиц физических величин
МОДУЛЬ 4. КЛАССИФИКАЦИЯ ИЗМЕРЕНИЙ. ПОНЯТИЕ О КАЧЕСТВЕ ИЗМЕРЕНИЙ
МОДУЛЬ 5. КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ
МОДУЛЬ 6. МЕТОДЫ ВЫЯВЛЕНИЯ И ИСКЛЮЧЕНИЯ ПОГРЕШНОСТЕЙ
МОДУЛЬ 7. АНАЛИЗ ТОЧЕЧНЫХ ДИАГРАММ
МОДУЛЬ 8. МАТЕМАТИЧЕСКАЯ ОБРАБОТКА И ФОРМЫ ПРЕДСТАВЛЕНИЯ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
МОДУЛЬ 13. СРЕДСТВА ИЗМЕРЕНИЙ. МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ
МОДУЛЬ 14. ЭТАЛОНЫ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН И ПЕРЕДАЧА ЕДИНИЦ ОТ ЭТАЛОНОВ
К систематическим погрешностям измерений можно отнести те составляющие, для которых можно считать доказанным наличие функциональных связей с вызывающими их аргументами. Для них можно предложить следующее определение: систематическая погрешность – закономерно изменяющаяся составляющая погрешности измерений.
Формально это записывается в виде
s = F (, ...),
где , – аргументы, вызывающие систематическую погрешность.
Главной особенностью систематической погрешности являетсяпринципиальная возможность ее выявления, прогнозирования и однозначной оценки,если удается узнать вид функции и значения аргументов.
В зависимости от характера измерения систематические погрешности подразделяют на элементарные и изменяющиеся по сложному закону. Элементарные погрешности можно условно разделить на постоянные, прогрессирующие (прогрессивные) и периодические. Прогрессирующими называют монотонно возрастающие или монотонно убывающие погрешности. Периодические погрешности – погрешности, изменение которых можно описать периодической функцией. Погрешности, изменяющиеся по сложному закону, образуются при объединении нескольких систематических погрешностей.
Систематические погрешности представлены в графической форме на рисунке 4, постоянные – на рисунке 5.4а (s = с, или s = const), а переменные – на рисунках 5.4 б – е.
Ъ
г д е
Простейшие переменные систематические погрешности, которые аппроксимируют графиками без перегибов (фактически это монотонно изменяющиеся или прогрессирующие погрешности) показаны на рисунках 5.4 б – г, а периодические или гармонические погрешности – на рисунке 5.4е.
Всем известны «спешащие» и «отстающие» часы, погрешности которых прогрессируют во времени, но мало кто анализирует показания часов за полный оборот стрелки. Если оценивать погрешности за один оборот, то можно утверждать, что в результате многократного повторения вращения стрелки часов должны проявляться периодические погрешности, обусловленные эксцентриситетом, которые дважды достигают максимального значения (по модулю) и превращающиеся в нуль при завершении полного оборота.
Обычно для описания и для аппроксимации систематической погрешности подбирают наиболее простую функцию, например линейную для прогрессирующей погрешности. Такой же упрощенный подход применяют и для аппроксимации гармонической систематической погрешности, которая может быть описана как синусоида, косинусоида, пилообразная либо другая периодическая функция.
Систематическая погрешность может иметь не только элементарный, но и более сложный характер, который можно аппроксимировать функцией, включающей приведенные простые составляющие.
Сложная систематическая погрешность, включающая постоянную, прогрессирующую ипериодическую составляющие, в общем виде может быть описана выражением
s = a + b + dsin,
где a – постоянная составляющая сложной систематической погрешности;
, – соответственно аргументы прогрессирующей и периодической составляющих сложной систематической погрешности.
Стандартное определение случайной погрешности измерения в строгом смысле не является определением, поскольку содержит «порочный круг»: составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины. Здесь опять использовано некорректное упоминание измерений одной и той же величины, а, кроме того, содержится бессмысленная характеристика качества выполнения измерений («проведенных с одинаковой тщательностью»).
Случайными погрешностями в строгом смысле термина можно считать только те, которые обладают статистической устойчивостью (ведут себя как центрированная случайная величина). Причиной появления таких погрешностей чаще всего является совокупное действие ряда слабо влияющих дестабилизирующих факторов, связанных с любыми источниками погрешностей, причем функциональные связи этих факторов (аргументов) с погрешностями либо отсутствуют (в наличии только стохастические зависимости), либо не могут быть выявлены из-за неопределенности действующих факторов и большого их числа.
Погрешности, которые нельзя отнести ни к случайным, ни к систематическим из-за совершенно иного механизма образования и принципиально отличного значения, называют грубыми погрешностями измерений или промахами. Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда.
«Определение» промаха сформулировано весьма неудачно, поскольку понятие «резкого отличия» не является критерием и оставляет значительные возможности для произвола. Некорректным является упоминание «данных условий». Ссылка на «условия измерения» создает впечатление связи грубой погрешности с единственным источником – нарушением нормальности условий измерения. Очевидно, что причинами возникновения грубой погрешности могут быть промах оператора при снятии отсчета или его записи, ошибка в реализации методики измерений, сбой в измерительной цепи прибора или незамеченное импульсное изменение влияющей физической величины. Причины появления результатов с грубыми погрешностями резко выпадают из ряда механизмов, формирующих систематические или случайные составляющие погрешности измерений.
«Результат измерения с грубой погрешностью» фактически вызван ошибкой, допущенной при измерении, поэтому результаты с грубыми погрешностями следует признать ошибочными и подлежащими устранению.
В некоторых метрологических источниках грубые погрешности измерений относят к случайным, что соответствует вульгарной трактовке понятия случайности и маскирует различия механизмов возникновения собственно случайных и грубых погрешностей. Грубые погрешности в принципе непредсказуемы, а их значения невозможно прогнозировать с учетом вероятности как это делают для случайных погрешностей. Фактически к результатам с грубыми погрешностями относят либо такие, которые явно не соответствуют ожидаемому результату измерений (нелепые результаты), либо экстремальные значения, отличия которых от средних значений массива выражены не столь откровенно, но принадлежность которых к данному массиву результатов имеет весьма малую вероятность.
Отбрасывание (элиминация) результатов с грубыми погрешностями предупреждает возможность значительного искажения оценки результатов измерений. Исключение результатов может осуществляться либо цензурированием явно нелепых значений, либо статистическим отбраковыванием отдельных экстремальных результатов (подозрительных на наличие грубых погрешностей), которое основано на принципе практической уверенности. Применение этого принципа позволяет отбрасывать те значения, вероятность появления которых в исследуемом массиве данных меньше некоторого заранее выбранного значения.
По значимости все погрешности (составляющие и интегральные) можно делить на значимые и пренебрежимо малые. К пренебрежимо малым составляющим погрешностям относят погрешности, которые значительно меньше доминирующих составляющих. Формальное соотношение между пренебрежимо малой min и доминирующей max составляющими можно записать в виде
min << max.
Пожалуй, любую отдельную случайную или систематическую составляющую гарантированно можно отнести к пренебрежимо малым погрешностям, если она на порядок меньше доминирующей составляющей одной и той же интегральной погрешности. Пренебрежимо малые погрешности при объединении всех составляющих i в комплексную оценку интегральной погрешности практически не оказывают влияния на окончательный результат, что формально можно записать как
= 1* 2 *… *i *… *n 2 *…*i *… *n,
где 1 = min << max.
Пренебрежимо малой интегральной погрешностью измерения можно считать такую, которая не является препятствием для замены истинного значения физической величины полученным результатом. В соответствии с требованием РМГ 29 – 99 за действительное значение физической величины принимают такое значение, которое получено экспериментально (в результате измерений) и настолько близко к истинному, что для данной задачи измерений может заменить истинное ввиду несущественности различия между ними
X дQ Q,
где X дQ – действительное значение физической величины;
Q – истинное значение физической величины.
Если различие между истинным значением физической величины Q и результатом ее измерения XдQ мы считаем пренебрежимо малым, можно записать
дQ 0,
где дQ – погрешность измерения действительного значения физической величины.
Для одной и той же физической величины могут рассматриваться разные действительные значения. Близость их к истинному значению зависит от задачи, которая поставлена при измерении. Очевидно, что для установления годности объекта по заданному параметру точность измерения физической величины может быть значительно ниже, чем при исследовании точности технологического процесса обработки того же объекта или при сортировке однородных объектов на группы для последующей селективной сборки. Установление действительного значения измеряемой физической величины должно предваряться выбором допустимой погрешности измерений, которая и будет представлять собой предел пренебрежимо малого значения погрешности результата измерений.
В зависимости от режима измерения погрешности принято делить на статические и динамические. Статическая погрешность измерений (статическая погрешность) – погрешность результата измерений, свойственная условиям статического измерения. Динамическая погрешность измерений (динамическая погрешность) – погрешность результата измерений, свойственная условиям динамического измерения. При этом под статическим понимают измерение не изменяющейся, а под динамическим – изменяющейся по размеру физической величины.
Стандартные «определения» фактически только именуют, но не определяют статическую и динамическую погрешности измерений. Непригодны для идентификации динамической погрешности и определения статической и динамической погрешностей средств измерений.
-
Динамическая погрешность средства измерений – погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины. -
Статическая погрешность средства измерений – погрешность средства измерений, применяемого при измерении физической величины, принимаемой за неизменную.
Поэтому метрологи, имеющие дело с динамическими погрешностями, вынуждены искать выход из сложившейся ситуации самостоятельно.
В соответствии с ранее действовавшим стандартом динамической погрешностью