Файл: Интеллектуальные информационные системы и технологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 404

Скачиваний: 11

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

УДК 004.89(075.8)

С применением

Без применения

Формирование

Приобретение

Извлечение

А1 <проверки нормальности распределения значений остатков>

Рис. 4.1. Обобщенная структура статической ЭС

Рис. 4.2. Обобщенная структура динамической ЭС

Глава 8. Хранилища данных и управление знаниями8.1. Хранилища данныхДля устранения разрозненности, разнотипности, противоречивости данных используется концепция «хранилище данных» (ХД). Под ХД понимают предметно-ориентированную, интегрированную, некорректи-руемую, зависимую от времени коллекцию данных, предназначенную для поддержки принятия управленческих решений. Хранилище данных должно предложить такую среду накопления данных, которая оптимизирована для выполнения сложных аналитических запросов управленческого персонала. Данные в хранилище не предназначены для модификации. Предметная ориентация означает, что данные объединены и хранятся в соответствии с теми областями, которые они описывают. Интегрированность подразумевает, что данные должны удовлетворять требованиям всего предприятия. Некорректируемость заключается в том, что данные не создаются в ХД, а поступают из внешних источников, не подвергаются изменениям и не удаляются. Данные в ХД должны быть согласованы во времени.При реализации ХД особое значение приобретают процессы извлечения, преобразования, анализа и представления. При извлечении данные приводятся к единому формату. Источники данных могут быть классифицированы по территориальному, административному признаку, степени достоверности, частоте обновляемости, количеству пользователей, секретности и используемым СУБД. Вся эта информация составляет основу словаря метаданных ХД, который призван обеспечить корректную периодическую актуализацию ХД.Инструментальные средства (ИС) реализующие аналитические методы обработки данных, классифицируются по способу представления данных. Выделяют ИС, хранящие данные:в реляционном виде, но имитирующие многоразмерность для пользователя;в многоразмерных базах;как в реляционном виде, так и в многоразмерных базах.Помимо извлечения данных из БД для принятия решений, актуален процесс извлечения знаний для удовлетворения информационных потребностей пользователя. Если в ЭС основное внимание уделяется проблеме извлечения знаний от экспертов, то в данном случае знания извлекаются из БД.С точки зрения пользователя в процессе извлечения знаний из БД должны решаться задачи преобразования данных (неструктурированных наборов чисел, символов) в информацию (описание обнаруженных закономерностей), информации в знания (значимые для пользователя закономерности), знаний в решения (последовательность действий, на-правленных на удовлетворение информационных потребностей поль-зователя).Интеллектуальные средства извлечения знаний из БД позволяют выявить закономерности и вывести правила из них. Эти закономерности и правила можно использовать для принятия решений и прогнозирования их последствий. Существует несколько интеллектуальных методов выявления и анализа знаний: ассоциация, последовательность, классификация, кластеризация и прогнозирование. Ассоциация имеет место в том случае, когда несколько событий связаны друг с другом. Если существует цепочка связанных во времени событий, то говорят о последовательности. С по-мощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Кластеризация аналогична классификации, но отличается от нее тем, что сами группы еще не сформированы. С помощью прогнозирования на основе особен-ностей поведения данных оцениваются будущие значения непрерывно изменяющихся переменных (см. п. 2.5).8.2. Управление знаниямиПонятие «управление знаниями» появилось в середине 90-х годов прошлого века в крупных корпорациях, где проблемы обработки информации приобрели особую остроту. Системы управления знаниями (Knowledge Management) получили название КМ-систем. Для их при-менения используются следующие технологии:электронная почта;базы и хранилища данных;системы групповой поддержки;браузеры и системы поиска;корпоративные сети и Интернет;ИИ-системы.Хранилища данных, которые работают по принципу центрального склада, стали одним из первых инструментариев КМ. Управление знаниями – это совокупность процессов, которые управляют созданием, распространением, обработкой и использованием знаний внутри пред-приятия. Необходимость в разработке КМ-систем возникла в силу нескольких причин:работники предприятия тратят слишком много времени на поиск необходимой информации;опыт ведущих специалистов используется только ими самими;ценная информация «захоронена» в огромном количестве докумен-тов, доступ к которым затруднен;из-за недостаточной информированности и игнорирования преды-дущего опыта повторяются «дорогостоящие» ошибки.Одним из новых решений по управлению знаниями является понятие корпоративной памяти, которая фиксирует информацию из различных источников предприятия и делает ее доступной специалистам для решения производственных задач. Корпоративная память не позволяет исчезнуть знаниям выбывающих специалистов. Различают два уровня корпоративной памяти: Уровень материальной или явной информации – данные и знания, которые содержатся в документах организации в виде сообщений, статей, справочников, патентов, ПО. Уровень персональной или скрытой информации – персо-нальные знания, неотрывно связанные с индивидуальным опытом, которые могут быть переданы через процедуры извлечения знаний. Скрытое зна-ние – основа СППР. При разработке КМ-систем можно выделить следующие этапы: Стихийное и бессистемное накопление информации в орга-низации. Извлечение знаний – наиболее сложный и трудоемкий этап. Структурирование – выделение основных понятий, выработка структуры представления информации. Формализация – представление структурированной информа-ции на языках описания данных и знаний. Обслуживание – корректировка данных и знаний. Автоматизированные системы КМ OMIS (Organizational Memory Information Systems) предназначены для накопления и управления знаниями предприятия (рис. 8.1). Рис. 8.1. Архитектура OMISОсновные функции OMIS:сбор и систематическая организация информации из различных источников в централизованное или структурное ХД;интеграция с существующими автоматизированными системами;обеспечение нужной информации по запросу.В отличие от ЭС первичной целью систем OMIS является не поддержка одной задачи, а лучшая эксплуатация необходимого общего ресурса знаний.Первые информационные системы на основе гипертекстовых (ГТ) моделей появились в середине 60-х годов ХХ века, но первые ком-мерческие ГТ-системы относятся к 1980-х годам. Под гипертекстом понимают технологию формирования информационных массивов в виде ассоциативных сетей, элементами или узлами которых выступают фраг-менты текста, рисунки, диаграммы. Навигация по таким сетям осу-ществляется по связям между узлами. Основные функции связей:переход к новой теме;присоединение комментария к документу;соединение ссылки на документ с документом, показ на экране графической информации;запуск другой программы.Мультимедиа (ММ) понимается как интегрированная компьютерная среда, позволяющая наряду с традиционными средствами взаимодействия человека и компьютера (дисплей, принтер, клавиатура) использовать новые возможности – звук, мультипликацию, видеоролики. Когда элементы ММ объединены на основе сети гипертекста, можно говорить о гипермедиа (ГМ). Основной сферой применения ГМ являются автома-тизированные обучающие системы или электронные учебники. Глобаль-ный успех в этом направлении получила сеть Интернет.8.3. Технология создания систем управления знаниямиПроектирование систем управления знаниями (СУЗ) или КМ-систем декомпозируется на этапы, которые свойственны любой другой ИИ-системе. Вместе с тем имеется ряд особенностей:коллективное использование знаний предполагает объединение и распределение источников знаний по различным субъектам, а следо-вательно, решение организационных вопросов администрирования и оп-тимизации деловых процессов, связывающих пользователей СУЗ;задача проектирования СУЗ носит непрерывный характер, поскольку постоянно добавляются внешние источники данных;поскольку СУЗ имеет многоцелевое значение, возникает потребность в интеграции разнообразных источников знаний на основе единого се-мантического описания пространства знаний.Этапы проектирования СУЗ:идентификация проблемной области:определение типов решаемых задач;отбор источников знаний;определение категорий пользователей;концептуализация:выявление понятий (категорий);выявление свойств (отношений);построение правил (ограничений);формализация:выбор метода представления знаний;представление знаний;реализация:создание онтологий;аннотирование и подключение источников знаний;настройка (создание) приложений;внедрение:тестирование;развитие.Онтология (от греч. «онтос» – сущее, «логос» – учение) – это точное (явное) описание концептуализации знаний, учение о сущем.Идентификация проблемной областиВ первую очередь определяется состав решаемых задач. Возможно создание узкоспециализированных систем по конкретным функциям управления: маркетинга, менеджмента, финансов. Разработка СУЗ может начинаться с отдельных областей, например с маркетинга, не требуя одновременной разработки всех необходимых онтологий и источников знаний. Для создания БЗ прецедентов требуется определить набор типовых бизнес-процессов, для которых будут отбираться прецеденты (например, разработка проектов, заключение договоров, проведение PR-акций). Центральное место в проектировании СУЗ занимает онтология, которая определяет и интегрирует все источники знаний. Требования разработки онтологий оформляются в виде спецификации требований (таблица). Предметная область Подбор и повышение квалификации персонала компании Назначение Онтология служит для обмена знаниями между депар-таментом управления и менеджерами проектов при отборе персонала. Используется для семантического поиска квали-фикационных характеристик для выполнения определенных видов работ Область значений Онтология содержит концепты (категории) управления пер-соналом. Концепты используемых квалификаций в техно-логиях рассматриваются детально Продолжение табл. Предметная область Подбор и повышение квалификации персонала компании Поддерживающие приложения Система управления квалификацией персонала в ИНТРАНЕТ-среде Источники знания Web-страницы департамента управления персоналомРуководство о развитии персоналаСпецификация продукции и технологийИнтервью с работниками департамента управления персо-налом и менеджерами проектов Концептуализация знаний с помощью онтологийНазначение онтологий – обеспечение возможностей:повышения интеллектуальности СУЗ на основе того, что остается неявным;стандартизации на основе описания целевого мира в виде словаря, разделения знаний между различными пользователями и компьютерными системами;систематизации знаний, позволяющей интегрировать разнородные источники знаний на базе единой многоаспектной таксономии, пред-ставляемой в общем словаре;снабжения необходимыми понятиями, отношениями и ограниче-ниями, которые используются как строительные блоки для создания конкретной модели решения задач;постепенного обобщения понятий конкретной проблемной об-ласти.Требования к проектированию онтологий знаний:ясность – четкая передача смысла введенных терминов (кон-цептов);согласованность – логическая непротиворечивость определений;расширяемость – возможность монотонного расширения и специали-зации без необходимости пересмотра уже существующих понятий;инвариантность к методам представления знаний;отражение только наиболее существенных предположений о модели-руемом мире.Онтологическое знание организуется на трех уровнях, в связи с чем выделяют онтологии:верхнего уровня (метаонтология);предметной области;задач.Метаонтология отражает такие общие понятия, как «сущность», «класс», «свойство», «значение», «типы данных», «типы отношений», «процесс», «событие». Определение общих категорий позволяет системе контролировать синтаксические конструкции понятий предметных и проблемных областей, которые идентифицирутся как наследники общих категорий.Онтология предметной области определяет набор понятий, ис-пользуемых при решении различных интеллектуальных задач и независимых от применяемого метода. При построении онтологии предметной области выявляются свойства и отношения понятий, строятся логические правила, расширяющие семантику модели предметной области.Онтология задач имеет дело с понятиями, описывающими методы преобразования объектов предметной области в процессе решения задач. Например, для задач обучения в качестве методов могут использоваться дедуктивный (от общего к частному), индуктивный (от частного к общему) и абдуктивный (от частного к частному). С помощью понятий, свойств и отношений описывается сущность используемых методов, устанавливается последовательность их выполнения. Введение онтологии задач позволяет расширить класс интеллектуальных задач, решаемых с помощью СУЗ, в частности перейти от простых поисковых задач к задаче конфигурации, когда система автоматически разбивает задачу на под-задачи, для каждой подзадачи выбирает метод решения, а для каждого метода – необходимые единицы предметных знаний. Такая СУЗ является не просто интеллектуальной информационно-поисковой системой, но и системой, которая планирует и генерирует решение задачи. В этом аспекте СУЗ должна обладать развитым механизмом вывода и по своей реализации сближается с классом ЭС, но на более развитой семанти-ческой основе. Формализация онтологического знанияВ основу формализации онтологий, с одной стороны, положены общепризнанные методы представления знаний (исчисление предикатов, семантические сети и фреймы), с другой  методы описания онто-логических знаний с помощью специальных семантических конструк-ций. В качестве языков представления онтологического знания исполь-зуются:языки, основанные на исчислении предикатов;HTML-подобные языки;XML-подобные языки.Языки, основанные на исчислении предикатов, построены на декларативной семантике и обеспечивают выражение произвольных логических предложений. С помощью этих языков хорошо представляется метазнание, что позволяет пользователю представлять знания в явном виде и разрешает пользователю применять новые конструкции представления знаний без изменения самого языка. Одним из таких языков является KIF, разработанный для обмена знаниями между различными программными агентами (ЛИСП-подобный язык).HTML-подобные языки (Hypertext Markup Language) – инструмент разметки гипертекста. С использованием HTML создано более 60 % ресурсов современного Интернета. Браузер – специальная клиентская программа, предназначенная для просмотра содержимого Web-узлов и отображения документов HTML. В качестве основы для описания онтологий и онтологического аннотирования текстов может выступать язык разметки данных HTML, дополненный специальными тегами (указателями). С помощью тегов происходит выделение семан-тических фрагментов текста, которые унифицированно интерпрети-руются семантическими анализаторами различных ПС. Языки данной группы позволяют описать объекты онтологии (концепты), отношения между ними и определить правила вывода. Основное назначение таких языков состоит в возможности описания онтологии, аннотирования необходимых Web-страниц концептами онтологии и дальнейшем осу-ществлении поиска данных Web-страниц с помощью специальной по-исковой машины.В качестве основы для XML-подобных языков выступает расширяемый язык разметки. В настоящее время существует около 20 различных языков, основанных на XML. Основным достоинством языка является то, что для работы с документами, подготовленными с помощью него, достаточно обычного интернет-браузера, т.е. не требуется никаких дополнительных средств. XML-документ представляет собой размеченное дерево. Структура XML описания обычного учебного курса приведена на рис. 8.2.Язык XML не обладает практически никакими возможностями в области представления онтологий. В нем отсутствуют специальные конструкции, позволяющие описать взаимоотношения между концептами онтологии, правила вывода. Он предназначен исключительно для представления данных. Язык RDF, представляющий расширение XML, позволяет описать концепты, отношения между ними, поддерживает иерархию концептов и их наследование, задает некоторые правила вывода. Базовыми строительными блоками в RDF является триплет «объект –атрибут – значение», часто записываемый в виде A (O, V), которыйчитается как «объект О имеет атрибут А со значением V». В семантической сети эту связь можно представить как ребро с меткой А, соединяющее два узла – О и V.Р ис. 8.2. Размеченное деревоВыбор ИС реализации СУЗ во многом определяется требуемой функциональностью использования СУЗ: информационным поиском в источниках знаний, коллективным решением задач, обучением и др. Для узкоспециализированных целей, ориентированных на поиск в интернет-ресурсах, применяются специализированные системы, например SHOE, которая обеспечивает аннотацию документов, сбор знаний в централи-зованную БЗ, выполнение поисковых запросов.Инструментальные средства должны обеспечивать выполнение двух основных групп функций: Создание и поддержание источников знаний: создание и поддержание онтологий;аннотирование источников знаний;подключение источников знаний;автоматическую рубрикацию и индексирование источников зна-ний; Доступ к источникам знаний: реализация запросов;навигация и просмотр;коммуникация пользователей;распространение знаний.Глава 9. Интеллектуальные информационные системыв условиях неопределенности и риска9.1. Понятие риска в системах поддержки принятий решений слабоструктурированных проблемЭкономические решения в зависимости от определенности воз-можных исходов или последствий рассматриваются в рамках трех моделей [16] выбора решения:в условиях определенности, если относительно каждого действия известно, что оно неизменно приводит к некоторому исходу;в ситуации риска, если каждое действие приводит к одному из множества возможных частных исходов, причем появление каждого исхода имеет вычисляемую или экспертно оцениваемую вероятность;при неопределенности, когда то или иное действие имеет своим следствием множество частных исходов, но их вероятности неиз-вестны.Вероятностные методы обеспечивают подходящие условия для принятия решения и содержательные гарантии качества выбора. При этом исходят из предположения, что суждения относительно значений, предпочтений и намерений представляют собой ценные абстракции человеческого опыта и их можно обрабатывать для принятия решений. В то время как суждения относительно правдоподобия событий квалифицируются вероятностями, суждения относительно желательности действий представляются понятиями. Байесовская методология рас-сматривает ожидаемую полезность U(d) как оценку качества решения d. В соответствии с этим, если мы можем выбрать либо действие d1, либо d2, вычисляем U(d1), U(d2) и выбираем действие, которое соответствует наибольшему значению. Семантика полезности состоит в том, чтобы описать риск.Под риском принято понимать вероятность (угрозу) утраты лицом или организацией части своих ресурсов, недополучения доходов или появления дополнительных расходов в результате осуществления определенной финансовой политики.Уровень риска – это объективная или субъективная вероятность возникновения потерь. Под объективной вероятностью понимается ко-личественная мера возможности наступления случайного события, по-лученная с помощью расчетов или опыта, позволяющая оценить веро-ятность выявления данного события. Субъективная вероятность пред-ставляет собой меру уверенности в истинности высказанного суждения и устанавливается экспертным путем.Уровни риска наиболее легко устанавливаются при помощи атрибутивных оценок типа «высокий», «средний», «небольшой». Разно-видностью атрибутивной оценки рисков является буквенная кодировка. При этом в порядке нарастания риска и падения надежности используются латинские буквы от А до D. AAA – самая высокая надежность;AA – очень высокая надежность;A – высокая надежность;…D – максимальный риск.Оценивать уровень риска можно, используя показатели бухгалтер-ской и статистической отчетности, в первую очередь КТЛ – коэффициент текущей ликвидности, который представляет собой соотношение ликвид-ных средств партнера и его долгов.В результате анализа ситуации строятся причинно-следственные диаграммы («дерево причин») и диаграммы зависимостей. Причинно-следственная диаграмма является формальным отображением структуры проблемной ситуации в виде иерархически незамкнутого графа, вер-шины которого соответствуют элементам проблемы, отражающим при-чины ее возникновения, а дуги – связям между ними. Связь элементов-подпроблем отображается в виде отношения «причина – следствие» (рис. 9.1). Рис. 9.1. Модель системы поддержки принятия решений: OLTR – средства складирования данных и оперативной обработки транзакций; OLAR – средства оперативной обработки информацииКорпоративная БД, организованная в виде ХД, заполняется ин-формацией с использованием технологий OLTR и OLAR. Для создания и реализации СППР слабоструктурированных проблем должны быть разработаны и адаптированы к ее условиям следующие методы и средства:система признаков для регистрации проблемных ситуаций;методы оценки степени критичности проблемных ситуаций;причинно-следственные диаграммы для диагностирования причин возникновения проблемных ситуаций;таблица принятия решений для формирования и выбора вариантов решений;методы прогнозирования результатов решений;модели функционирования предприятия и внешней среды.Наиболее распространенной формой выявления проблем с исполь-зованием технико-экономических показателей является сравнение их фактических величин с нормативными и средними значениями.Логический анализ проблем-причин, находящихся на нижних уровнях иерархии, показывает, что во многих случаях они позволяют сформировать варианты решения проблем более высокого уровня. Например, возможны следующие варианты решения проблемы снижения объемов производства и сбыта продукции:варьирование ценами;варьирование формами оплаты;снижение численности работающих;сокращение доли условно-постоянных расходов в себестоимости продукции;сокращение сроков выполнения заказов;усиление службы маркетинга.Когда отсутствуют статистические данные, необходимые для расчета объективной вероятности риска, прибегают к субъективным оценкам, основанным на интуиции и опыте экспертов. Дж. Кейнс ввел понятие субъективной вероятности. В соответствии с принципом безразличия одинаково правдоподобные события или суждения долж-ны иметь одинаковую вероятность, что математически записывается так:А В ≡ Р(А) = Р(В),где

Рис. 10.1. Связь между видами знаний и формами их репрезентации



пол, возраст хотя и влияют на эффективность контакта, но не являются определяющими.

Параметры процедурного слоя описывают непосредственно процесс процедуры извлечения знаний и по сути являются профессиональными:

ситуация общения определяется местом проведения бесед с экспертом, продолжительностью и временем их проведения. Желательно проводить беседы с экспертом наедине, в первой половине дня; их продолжительность не должна превышать двух часов;

оборудование включает вспомогательные средства (наглядный материал, средства протоколирования), освещенность, мебель;

профессиональные приемы когнитолога (темп, стиль, методы). Учет индивидуального темпа эксперта позволяет когнитологу снизить напряженность процедуры извлечения знаний. Лучше всего человек воспринимает предложения из 5–9 слов (письмо Ингве – Миллера). Основная часть информации поступает к когнитологу в форме предложений на естественном языке. Однако внешняя речь эксперта есть интерпреция его внутренней речи, которая гораздо богаче и многообразнее. При этом для передачи этой внутренней речи эксперт использует и невербальные средства (интонацию, мимику, жесты). Методы извлечения знаний проанализированы ниже (см. п. 5.3).

Наименее исследованы в настоящее время проблемы когнитивного слоя, связанные с изучением семантического пространства памяти эксперта и реконструкцией его понятийной структуры и модели рассуждений. Основными факторами, влияющими на когнитивную адекватность, являются:

когнитивный стиль, под которым понимается совокупность критериев предпочтения при решении задач и познании мира, специфичная для каждого человека (поленезависимость, импульсивность, ригидность, когнитивная эквивалентность). Поленезависимость позволяет человеку акцентировать внимание лишь на тех аспектах проблемы, которые необходимы для решения конкретной задачи. Под импульсивностью понимается способность к быстрому принятию решения (в противоположность рефлексивности). Эксперту и когнтологу желательно быть рефлексивными. Ригидные люди не склонны менять свои представления и структуру восприятия,
что для когнитологов нежелательно. Когнитивная эквивалентность характеризует способность человека к различению понятий и разбиению их на классы и подклассы;


семантическая репрезентативность Pz подразумевает подход, исключающий традиционное навязывание эксперту некоей модели представления знаний и заставляющий когнитолога последовательно воссоздавать модель мира эксперта. Проблема семантической репрезентативности ориентирована на достижение адекватности P
z и концептуальной модели. Лингвистический аспект извлечения знаний касается исследований языковых проблем и включает три слоя:

«общий код» решает проблему «языковых ножниц» между профессиональной терминологией эксперта и обычным языком когнитолога, включая такие компоненты, как общенаучная
терминология, элементы бытового языка, неологизмы, профессиональный жаргон (рис. 2.2).


В дальнейшем «общий код» преобразуется в семантическую сеть, которая является прообразом Pz предметной области;

понятийная структура предполагает построение иерархической сети понятий, или «пирамиды знаний». Задача когнитолога заключается в построении фрагментов БЗ – «сшивании» терминов;

словарь пользователя обеспечивает «прозрачность» и доступность ЭС для конечных пользователей.

Рис. 2.2. Структура «общего кода»

Гносеология – это раздел философии, связанный с теорией познания, или теорией отражения действительности в сознании человека. Гносеологический аспект извлечения знаний объединяет методологические проблемы получения нового научного знания, поскольку при создании БЗ эксперт часто впервые формулирует некоторые закономерности из личного опыта. Инженерия знаний как наука дважды гносеологична: сначала действительность отражается в сознании эксперта, а затем опыт эксперта интерпретируется сознанием когнитолога в поле знаний, служащее основой построения ЭС. Гносеологическую цепочку можно представить в следующем виде: факт обобщенный факт эмпирический закон теоретический закон. Основными методологическими критериями научности, позволяющими считать научным как само новое знание, так и способ его получения, являются:

внутренняя согласованность, определяющая характеристики эмпирического знания (модальность, противоречивость, неполнота). Модальность знания означает возможность его существования в различных категориях, т.е. в конструкциях существования и долженствования – часть закономерностей возможна, часть обязательна. Кроме того, необходимо различать оттенки модальности: «эксперт знает, что…»; «эксперт думает, что…»; «эксперт предполагает, что…»; «эксперт считает, что…». Противоречивость эмпирического знания – естественное следствие из основных законов диалектики. При этом противоречия чаще всего служат отправной точкой в рассуждениях эксперта. Неполнота знания связана с невозможностью полного описания предметной области;



системность ориентирует эксперта на рассмотрение предметной области с позиций закономерностей системного целого и взаимодействия составляющих его частей. Современный структурализм исходит из многоуровневой иерархической организации любого объекта. Иными словами, все процессы и явления можно рассматривать как множество более мелких подмножеств (признаков) и, наоборот, любые объекты можно рассматривать как элементы более высоких классов обобщений;

объективность является труднодостижимым методологическим критерием, поскольку процесс познания глубоко субъективен, т.е. в значительной степени зависит от особенностей эксперта. Субъективность начинается уже с описания фактов и возрастает по мере углубления идеализации объектов. Следовательно, более корректно говорить о глубине понимания, чем об объективности знания;

историзм – связан с развитием. Познание настоящего есть познание породившего его прошлого. Большинство ЭС дают «горизонтальный» срез знаний – без учета времени (в статике). Тем не менее, когнитолог должен рассматривать изучаемые процессы с учетом временных изменений.

Методологическая структура познания может быть представлена как последовательность этапов: описание и обобщение фактов; установление логических и математических связей, дедукция и индукция законов; построение идеализированной модели; объяснение и предсказание явлений.
2.3. Методы извлечения поверхностных знаний
По принципу источника знаний методы их извлечения делятся на коммуникативные и текстологические. Коммуникативные методы – это набор приемов и процедур, предполагающих контакт когнитолога с непосредственным источником знаний – экспертом, а текстологические включают методы извлечения знаний из документов и специальной литературы [5, 24].

В свою очередь коммуникативные методы извлечения знаний делятся на пассивные и активные. В пассивных методах ведущая роль фактически передается эксперту, а когнитолог только фиксирует рассуждения эксперта во время работы по принятию решений. К этим методам относятся наблюдение, анализ протоколов «мыслей вслух» и лекции.

В процессе наблюдения когнитолог находится рядом с экспертом и протоколирует все его действия. Эксперт подробно комментирует свои действия. Непременное условие этого метода – невмешательство когнитолога в работу эксперта. Наблюдение – один из распространенных методов извлечения знаний на начальных этапах разработки ЭС.


Протоколирование «мыслей вслух» отличается от наблюдения тем, что эксперт не просто комментирует, но и объясняет цепочку рассуждений при решении конкретной задачи. Основной трудностью при протоколировании «мыслей вслух» является принципиальная сложность для любого человека объяснить, как он думает, поскольку люди не всегда в состоянии достоверно описать мыслительные процессы. Кроме того, часть знаний, хранящихся в невербальной форме, слабо коррелирует с их словесным описанием (например, различные процедурные знания типа «как завязать галстук»). Обычно «мысли вслух» дополняются одним из активных методов для реализации обратной связи с экспертом.

Лекция является наиболее традиционным способом передачи знаний. Использование лекции для извлечения знаний целесообразно, если эксперт обладает лекторским мастерством. В процессе лекции когнитолог может задавать уточняющие вопросы. Как и другие пассивные методы, лекции используются для извлечения знаний на начальных стадиях разработки ЭС.

В активных методах извлечения знаний ведущая роль принадлежит когнитологу. Активные методы подразделяются на индивидуальные
и групповые. Активные индивидуальные методы извлечения знаний в настоящее время являются наиболее распространенными и включают анкетирование, интервью, свободный диалог, игры с экспертом.

Анкетирование – наиболее жесткий метод (стандартизированный). Когнитолог заранее составляет вопросник и осуществляет опрос нескольких экспертов. Существует несколько общих рекомендаций при составлении анкет:

  • анкета не должна быть монотонной и однообразной;

  • анкета должна быть приспособлена к языку экспертов;

  • поскольку вопросы влияют друг на друга, их последовательность должна быть строго продумана;

  • желательно стремиться к оптимальной избыточности;

  • язык анкеты должен быть понятным, а также предельно вежливым.

Под интервью понимается специфическая форма общения когнитолога с экспертом, в которой когнитолог задает эксперту серию заранее подготовленных вопросов. В интервью когнитолог имеет возможность в зависимости от ситуации опускать ряд вопросов либо вставлять новые вопросы, изменять темп, разнообразить ситуацию общения. Вопросы подразделяются: по форме – на открытые (для ответа предоставляют полную свободу) и закрытые (предполагаются фиксированные ответы), личные и безличные
, прямые и косвенные, вербальные и с использованием наглядного материала; по функции – на основные, зондирующие и контрольные; по воздействию – на нейтральные и наводящие.

Свободный диалог – это метод извлечения знаний в форме беседы когнитолога и эксперта. Диалог предполагает выбор правильного темпа и ритма беседы, поскольку при больших паузах эксперт отвлекается, а при высоком темпе оба собеседника быстро утомляются.

Игра с экспертом предполагает, что эксперт и когнитолог в моделируемой ситуации берут на себя некоторые роли, например «учителя» и «ученика». В процессе игры эксперт поправляет ошибки «ученика». Существуют следующие рекомендации когнитологу по проведению индивидуальных игр: играть смело, нешаблонно; не навязывать игру эксперту, если он не расположен к ней; «не давить на эксперта» и не забывать цели игры.

К активным групповым методам извлечения знаний относятся «мозговой штурм», дискуссии за круглым столом и ролевые игры.

«Мозговой штурм», или «мозговая атака», – один из
наиболее распространенных методов раскрепощения и активизации творческого мышления. Основная идея «штурма» – отделение процедуры генерирования идей в замкнутой группе экспертов от процесса анализа и оценки высказанных идей. Как правило, «штурм»
длится не более 40 минут при числе участников до 10 человек. Экспертам предлагается высказывать любые идеи на заданную тему. Критика экспертов друг другом категорически запрещена, поскольку высказанная одним экспертом не правильная идея может подтолкнуть другого эксперта к правильному решению. Результаты оценивает группа экспертов, не участвовавших в «штурме».


Метод круглого стола предусматривает обсуждение несколькими равноправными экспертами какой-либо проблемы из выбранной предметной области. Задача дискуссии – коллективно, с разных точек зрения, под разными углами исследовать спорные гипотезы предметной области. По ходу дискуссии важно проследить, чтобы слишком эмоциональные и разговорчивые эксперты не подменили тему и чтобы взаимная критика была обоснованной.

Ролевые игры предусматривают участие нескольких экспертов. Роль – комплекс образцов поведения. Когнитолог является режиссером и сценаристом, и ему предоставляется полная свобода в выборе формы проведения игры. Из трех основных типов деловых игр – учебных, планово-производственных и исследовательских – к экспертам ближе всего последние, которые используются для анализа систем, проверки правил принятия решений.