Файл: Интеллектуальные информационные системы и технологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 402

Скачиваний: 11

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

УДК 004.89(075.8)

С применением

Без применения

Формирование

Приобретение

Извлечение

А1 <проверки нормальности распределения значений остатков>

Рис. 4.1. Обобщенная структура статической ЭС

Рис. 4.2. Обобщенная структура динамической ЭС

Глава 8. Хранилища данных и управление знаниями8.1. Хранилища данныхДля устранения разрозненности, разнотипности, противоречивости данных используется концепция «хранилище данных» (ХД). Под ХД понимают предметно-ориентированную, интегрированную, некорректи-руемую, зависимую от времени коллекцию данных, предназначенную для поддержки принятия управленческих решений. Хранилище данных должно предложить такую среду накопления данных, которая оптимизирована для выполнения сложных аналитических запросов управленческого персонала. Данные в хранилище не предназначены для модификации. Предметная ориентация означает, что данные объединены и хранятся в соответствии с теми областями, которые они описывают. Интегрированность подразумевает, что данные должны удовлетворять требованиям всего предприятия. Некорректируемость заключается в том, что данные не создаются в ХД, а поступают из внешних источников, не подвергаются изменениям и не удаляются. Данные в ХД должны быть согласованы во времени.При реализации ХД особое значение приобретают процессы извлечения, преобразования, анализа и представления. При извлечении данные приводятся к единому формату. Источники данных могут быть классифицированы по территориальному, административному признаку, степени достоверности, частоте обновляемости, количеству пользователей, секретности и используемым СУБД. Вся эта информация составляет основу словаря метаданных ХД, который призван обеспечить корректную периодическую актуализацию ХД.Инструментальные средства (ИС) реализующие аналитические методы обработки данных, классифицируются по способу представления данных. Выделяют ИС, хранящие данные:в реляционном виде, но имитирующие многоразмерность для пользователя;в многоразмерных базах;как в реляционном виде, так и в многоразмерных базах.Помимо извлечения данных из БД для принятия решений, актуален процесс извлечения знаний для удовлетворения информационных потребностей пользователя. Если в ЭС основное внимание уделяется проблеме извлечения знаний от экспертов, то в данном случае знания извлекаются из БД.С точки зрения пользователя в процессе извлечения знаний из БД должны решаться задачи преобразования данных (неструктурированных наборов чисел, символов) в информацию (описание обнаруженных закономерностей), информации в знания (значимые для пользователя закономерности), знаний в решения (последовательность действий, на-правленных на удовлетворение информационных потребностей поль-зователя).Интеллектуальные средства извлечения знаний из БД позволяют выявить закономерности и вывести правила из них. Эти закономерности и правила можно использовать для принятия решений и прогнозирования их последствий. Существует несколько интеллектуальных методов выявления и анализа знаний: ассоциация, последовательность, классификация, кластеризация и прогнозирование. Ассоциация имеет место в том случае, когда несколько событий связаны друг с другом. Если существует цепочка связанных во времени событий, то говорят о последовательности. С по-мощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Кластеризация аналогична классификации, но отличается от нее тем, что сами группы еще не сформированы. С помощью прогнозирования на основе особен-ностей поведения данных оцениваются будущие значения непрерывно изменяющихся переменных (см. п. 2.5).8.2. Управление знаниямиПонятие «управление знаниями» появилось в середине 90-х годов прошлого века в крупных корпорациях, где проблемы обработки информации приобрели особую остроту. Системы управления знаниями (Knowledge Management) получили название КМ-систем. Для их при-менения используются следующие технологии:электронная почта;базы и хранилища данных;системы групповой поддержки;браузеры и системы поиска;корпоративные сети и Интернет;ИИ-системы.Хранилища данных, которые работают по принципу центрального склада, стали одним из первых инструментариев КМ. Управление знаниями – это совокупность процессов, которые управляют созданием, распространением, обработкой и использованием знаний внутри пред-приятия. Необходимость в разработке КМ-систем возникла в силу нескольких причин:работники предприятия тратят слишком много времени на поиск необходимой информации;опыт ведущих специалистов используется только ими самими;ценная информация «захоронена» в огромном количестве докумен-тов, доступ к которым затруднен;из-за недостаточной информированности и игнорирования преды-дущего опыта повторяются «дорогостоящие» ошибки.Одним из новых решений по управлению знаниями является понятие корпоративной памяти, которая фиксирует информацию из различных источников предприятия и делает ее доступной специалистам для решения производственных задач. Корпоративная память не позволяет исчезнуть знаниям выбывающих специалистов. Различают два уровня корпоративной памяти: Уровень материальной или явной информации – данные и знания, которые содержатся в документах организации в виде сообщений, статей, справочников, патентов, ПО. Уровень персональной или скрытой информации – персо-нальные знания, неотрывно связанные с индивидуальным опытом, которые могут быть переданы через процедуры извлечения знаний. Скрытое зна-ние – основа СППР. При разработке КМ-систем можно выделить следующие этапы: Стихийное и бессистемное накопление информации в орга-низации. Извлечение знаний – наиболее сложный и трудоемкий этап. Структурирование – выделение основных понятий, выработка структуры представления информации. Формализация – представление структурированной информа-ции на языках описания данных и знаний. Обслуживание – корректировка данных и знаний. Автоматизированные системы КМ OMIS (Organizational Memory Information Systems) предназначены для накопления и управления знаниями предприятия (рис. 8.1). Рис. 8.1. Архитектура OMISОсновные функции OMIS:сбор и систематическая организация информации из различных источников в централизованное или структурное ХД;интеграция с существующими автоматизированными системами;обеспечение нужной информации по запросу.В отличие от ЭС первичной целью систем OMIS является не поддержка одной задачи, а лучшая эксплуатация необходимого общего ресурса знаний.Первые информационные системы на основе гипертекстовых (ГТ) моделей появились в середине 60-х годов ХХ века, но первые ком-мерческие ГТ-системы относятся к 1980-х годам. Под гипертекстом понимают технологию формирования информационных массивов в виде ассоциативных сетей, элементами или узлами которых выступают фраг-менты текста, рисунки, диаграммы. Навигация по таким сетям осу-ществляется по связям между узлами. Основные функции связей:переход к новой теме;присоединение комментария к документу;соединение ссылки на документ с документом, показ на экране графической информации;запуск другой программы.Мультимедиа (ММ) понимается как интегрированная компьютерная среда, позволяющая наряду с традиционными средствами взаимодействия человека и компьютера (дисплей, принтер, клавиатура) использовать новые возможности – звук, мультипликацию, видеоролики. Когда элементы ММ объединены на основе сети гипертекста, можно говорить о гипермедиа (ГМ). Основной сферой применения ГМ являются автома-тизированные обучающие системы или электронные учебники. Глобаль-ный успех в этом направлении получила сеть Интернет.8.3. Технология создания систем управления знаниямиПроектирование систем управления знаниями (СУЗ) или КМ-систем декомпозируется на этапы, которые свойственны любой другой ИИ-системе. Вместе с тем имеется ряд особенностей:коллективное использование знаний предполагает объединение и распределение источников знаний по различным субъектам, а следо-вательно, решение организационных вопросов администрирования и оп-тимизации деловых процессов, связывающих пользователей СУЗ;задача проектирования СУЗ носит непрерывный характер, поскольку постоянно добавляются внешние источники данных;поскольку СУЗ имеет многоцелевое значение, возникает потребность в интеграции разнообразных источников знаний на основе единого се-мантического описания пространства знаний.Этапы проектирования СУЗ:идентификация проблемной области:определение типов решаемых задач;отбор источников знаний;определение категорий пользователей;концептуализация:выявление понятий (категорий);выявление свойств (отношений);построение правил (ограничений);формализация:выбор метода представления знаний;представление знаний;реализация:создание онтологий;аннотирование и подключение источников знаний;настройка (создание) приложений;внедрение:тестирование;развитие.Онтология (от греч. «онтос» – сущее, «логос» – учение) – это точное (явное) описание концептуализации знаний, учение о сущем.Идентификация проблемной областиВ первую очередь определяется состав решаемых задач. Возможно создание узкоспециализированных систем по конкретным функциям управления: маркетинга, менеджмента, финансов. Разработка СУЗ может начинаться с отдельных областей, например с маркетинга, не требуя одновременной разработки всех необходимых онтологий и источников знаний. Для создания БЗ прецедентов требуется определить набор типовых бизнес-процессов, для которых будут отбираться прецеденты (например, разработка проектов, заключение договоров, проведение PR-акций). Центральное место в проектировании СУЗ занимает онтология, которая определяет и интегрирует все источники знаний. Требования разработки онтологий оформляются в виде спецификации требований (таблица). Предметная область Подбор и повышение квалификации персонала компании Назначение Онтология служит для обмена знаниями между депар-таментом управления и менеджерами проектов при отборе персонала. Используется для семантического поиска квали-фикационных характеристик для выполнения определенных видов работ Область значений Онтология содержит концепты (категории) управления пер-соналом. Концепты используемых квалификаций в техно-логиях рассматриваются детально Продолжение табл. Предметная область Подбор и повышение квалификации персонала компании Поддерживающие приложения Система управления квалификацией персонала в ИНТРАНЕТ-среде Источники знания Web-страницы департамента управления персоналомРуководство о развитии персоналаСпецификация продукции и технологийИнтервью с работниками департамента управления персо-налом и менеджерами проектов Концептуализация знаний с помощью онтологийНазначение онтологий – обеспечение возможностей:повышения интеллектуальности СУЗ на основе того, что остается неявным;стандартизации на основе описания целевого мира в виде словаря, разделения знаний между различными пользователями и компьютерными системами;систематизации знаний, позволяющей интегрировать разнородные источники знаний на базе единой многоаспектной таксономии, пред-ставляемой в общем словаре;снабжения необходимыми понятиями, отношениями и ограниче-ниями, которые используются как строительные блоки для создания конкретной модели решения задач;постепенного обобщения понятий конкретной проблемной об-ласти.Требования к проектированию онтологий знаний:ясность – четкая передача смысла введенных терминов (кон-цептов);согласованность – логическая непротиворечивость определений;расширяемость – возможность монотонного расширения и специали-зации без необходимости пересмотра уже существующих понятий;инвариантность к методам представления знаний;отражение только наиболее существенных предположений о модели-руемом мире.Онтологическое знание организуется на трех уровнях, в связи с чем выделяют онтологии:верхнего уровня (метаонтология);предметной области;задач.Метаонтология отражает такие общие понятия, как «сущность», «класс», «свойство», «значение», «типы данных», «типы отношений», «процесс», «событие». Определение общих категорий позволяет системе контролировать синтаксические конструкции понятий предметных и проблемных областей, которые идентифицирутся как наследники общих категорий.Онтология предметной области определяет набор понятий, ис-пользуемых при решении различных интеллектуальных задач и независимых от применяемого метода. При построении онтологии предметной области выявляются свойства и отношения понятий, строятся логические правила, расширяющие семантику модели предметной области.Онтология задач имеет дело с понятиями, описывающими методы преобразования объектов предметной области в процессе решения задач. Например, для задач обучения в качестве методов могут использоваться дедуктивный (от общего к частному), индуктивный (от частного к общему) и абдуктивный (от частного к частному). С помощью понятий, свойств и отношений описывается сущность используемых методов, устанавливается последовательность их выполнения. Введение онтологии задач позволяет расширить класс интеллектуальных задач, решаемых с помощью СУЗ, в частности перейти от простых поисковых задач к задаче конфигурации, когда система автоматически разбивает задачу на под-задачи, для каждой подзадачи выбирает метод решения, а для каждого метода – необходимые единицы предметных знаний. Такая СУЗ является не просто интеллектуальной информационно-поисковой системой, но и системой, которая планирует и генерирует решение задачи. В этом аспекте СУЗ должна обладать развитым механизмом вывода и по своей реализации сближается с классом ЭС, но на более развитой семанти-ческой основе. Формализация онтологического знанияВ основу формализации онтологий, с одной стороны, положены общепризнанные методы представления знаний (исчисление предикатов, семантические сети и фреймы), с другой  методы описания онто-логических знаний с помощью специальных семантических конструк-ций. В качестве языков представления онтологического знания исполь-зуются:языки, основанные на исчислении предикатов;HTML-подобные языки;XML-подобные языки.Языки, основанные на исчислении предикатов, построены на декларативной семантике и обеспечивают выражение произвольных логических предложений. С помощью этих языков хорошо представляется метазнание, что позволяет пользователю представлять знания в явном виде и разрешает пользователю применять новые конструкции представления знаний без изменения самого языка. Одним из таких языков является KIF, разработанный для обмена знаниями между различными программными агентами (ЛИСП-подобный язык).HTML-подобные языки (Hypertext Markup Language) – инструмент разметки гипертекста. С использованием HTML создано более 60 % ресурсов современного Интернета. Браузер – специальная клиентская программа, предназначенная для просмотра содержимого Web-узлов и отображения документов HTML. В качестве основы для описания онтологий и онтологического аннотирования текстов может выступать язык разметки данных HTML, дополненный специальными тегами (указателями). С помощью тегов происходит выделение семан-тических фрагментов текста, которые унифицированно интерпрети-руются семантическими анализаторами различных ПС. Языки данной группы позволяют описать объекты онтологии (концепты), отношения между ними и определить правила вывода. Основное назначение таких языков состоит в возможности описания онтологии, аннотирования необходимых Web-страниц концептами онтологии и дальнейшем осу-ществлении поиска данных Web-страниц с помощью специальной по-исковой машины.В качестве основы для XML-подобных языков выступает расширяемый язык разметки. В настоящее время существует около 20 различных языков, основанных на XML. Основным достоинством языка является то, что для работы с документами, подготовленными с помощью него, достаточно обычного интернет-браузера, т.е. не требуется никаких дополнительных средств. XML-документ представляет собой размеченное дерево. Структура XML описания обычного учебного курса приведена на рис. 8.2.Язык XML не обладает практически никакими возможностями в области представления онтологий. В нем отсутствуют специальные конструкции, позволяющие описать взаимоотношения между концептами онтологии, правила вывода. Он предназначен исключительно для представления данных. Язык RDF, представляющий расширение XML, позволяет описать концепты, отношения между ними, поддерживает иерархию концептов и их наследование, задает некоторые правила вывода. Базовыми строительными блоками в RDF является триплет «объект –атрибут – значение», часто записываемый в виде A (O, V), которыйчитается как «объект О имеет атрибут А со значением V». В семантической сети эту связь можно представить как ребро с меткой А, соединяющее два узла – О и V.Р ис. 8.2. Размеченное деревоВыбор ИС реализации СУЗ во многом определяется требуемой функциональностью использования СУЗ: информационным поиском в источниках знаний, коллективным решением задач, обучением и др. Для узкоспециализированных целей, ориентированных на поиск в интернет-ресурсах, применяются специализированные системы, например SHOE, которая обеспечивает аннотацию документов, сбор знаний в централи-зованную БЗ, выполнение поисковых запросов.Инструментальные средства должны обеспечивать выполнение двух основных групп функций: Создание и поддержание источников знаний: создание и поддержание онтологий;аннотирование источников знаний;подключение источников знаний;автоматическую рубрикацию и индексирование источников зна-ний; Доступ к источникам знаний: реализация запросов;навигация и просмотр;коммуникация пользователей;распространение знаний.Глава 9. Интеллектуальные информационные системыв условиях неопределенности и риска9.1. Понятие риска в системах поддержки принятий решений слабоструктурированных проблемЭкономические решения в зависимости от определенности воз-можных исходов или последствий рассматриваются в рамках трех моделей [16] выбора решения:в условиях определенности, если относительно каждого действия известно, что оно неизменно приводит к некоторому исходу;в ситуации риска, если каждое действие приводит к одному из множества возможных частных исходов, причем появление каждого исхода имеет вычисляемую или экспертно оцениваемую вероятность;при неопределенности, когда то или иное действие имеет своим следствием множество частных исходов, но их вероятности неиз-вестны.Вероятностные методы обеспечивают подходящие условия для принятия решения и содержательные гарантии качества выбора. При этом исходят из предположения, что суждения относительно значений, предпочтений и намерений представляют собой ценные абстракции человеческого опыта и их можно обрабатывать для принятия решений. В то время как суждения относительно правдоподобия событий квалифицируются вероятностями, суждения относительно желательности действий представляются понятиями. Байесовская методология рас-сматривает ожидаемую полезность U(d) как оценку качества решения d. В соответствии с этим, если мы можем выбрать либо действие d1, либо d2, вычисляем U(d1), U(d2) и выбираем действие, которое соответствует наибольшему значению. Семантика полезности состоит в том, чтобы описать риск.Под риском принято понимать вероятность (угрозу) утраты лицом или организацией части своих ресурсов, недополучения доходов или появления дополнительных расходов в результате осуществления определенной финансовой политики.Уровень риска – это объективная или субъективная вероятность возникновения потерь. Под объективной вероятностью понимается ко-личественная мера возможности наступления случайного события, по-лученная с помощью расчетов или опыта, позволяющая оценить веро-ятность выявления данного события. Субъективная вероятность пред-ставляет собой меру уверенности в истинности высказанного суждения и устанавливается экспертным путем.Уровни риска наиболее легко устанавливаются при помощи атрибутивных оценок типа «высокий», «средний», «небольшой». Разно-видностью атрибутивной оценки рисков является буквенная кодировка. При этом в порядке нарастания риска и падения надежности используются латинские буквы от А до D. AAA – самая высокая надежность;AA – очень высокая надежность;A – высокая надежность;…D – максимальный риск.Оценивать уровень риска можно, используя показатели бухгалтер-ской и статистической отчетности, в первую очередь КТЛ – коэффициент текущей ликвидности, который представляет собой соотношение ликвид-ных средств партнера и его долгов.В результате анализа ситуации строятся причинно-следственные диаграммы («дерево причин») и диаграммы зависимостей. Причинно-следственная диаграмма является формальным отображением структуры проблемной ситуации в виде иерархически незамкнутого графа, вер-шины которого соответствуют элементам проблемы, отражающим при-чины ее возникновения, а дуги – связям между ними. Связь элементов-подпроблем отображается в виде отношения «причина – следствие» (рис. 9.1). Рис. 9.1. Модель системы поддержки принятия решений: OLTR – средства складирования данных и оперативной обработки транзакций; OLAR – средства оперативной обработки информацииКорпоративная БД, организованная в виде ХД, заполняется ин-формацией с использованием технологий OLTR и OLAR. Для создания и реализации СППР слабоструктурированных проблем должны быть разработаны и адаптированы к ее условиям следующие методы и средства:система признаков для регистрации проблемных ситуаций;методы оценки степени критичности проблемных ситуаций;причинно-следственные диаграммы для диагностирования причин возникновения проблемных ситуаций;таблица принятия решений для формирования и выбора вариантов решений;методы прогнозирования результатов решений;модели функционирования предприятия и внешней среды.Наиболее распространенной формой выявления проблем с исполь-зованием технико-экономических показателей является сравнение их фактических величин с нормативными и средними значениями.Логический анализ проблем-причин, находящихся на нижних уровнях иерархии, показывает, что во многих случаях они позволяют сформировать варианты решения проблем более высокого уровня. Например, возможны следующие варианты решения проблемы снижения объемов производства и сбыта продукции:варьирование ценами;варьирование формами оплаты;снижение численности работающих;сокращение доли условно-постоянных расходов в себестоимости продукции;сокращение сроков выполнения заказов;усиление службы маркетинга.Когда отсутствуют статистические данные, необходимые для расчета объективной вероятности риска, прибегают к субъективным оценкам, основанным на интуиции и опыте экспертов. Дж. Кейнс ввел понятие субъективной вероятности. В соответствии с принципом безразличия одинаково правдоподобные события или суждения долж-ны иметь одинаковую вероятность, что математически записывается так:А В ≡ Р(А) = Р(В),где

Рис. 10.1. Связь между видами знаний и формами их репрезентации

Анализ отклонений позволяет отыскать среди множества событий те, которые существенно отличаются от нормы. Задача оценивания сводится
к предсказанию непрерывных значений признака, а анализ связей
к обнаружению зависимостей в наборе данных.

Глава 3. Модели представления знаний
Знания – это хорошо структурированные данные или мета данные (см. п. 1.1). Для представления поверхностных знаний используются модульные модели (продукционные, формально-логические), а для представления глубинных знаний – сетевые (фреймовые, семантические сети) [1, 2, 9, 12, 16, 22].
3.1. Продукционная модель
Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде конструкций типа «ЕСЛИ <условие>, ТО <действие>». Под условием (антецедентом) понимается некоторое предложение – образец, по которому осуществляется поиск в БЗ, а под действием (консеквентом) – действия, выполняемые при успешном исходе поиска. Они могут быть промежуточными, выступающими далее как условия, и терминальными (целевыми), завершающими работу системы.
Пример 3.1

ЕСЛИ <двигатель не заводится> И <стартер не работает>, ТО <неполадки в системе электропитания стартера>.

Антецедент и консеквент формируются из атрибутов (двигатель, стартер) и значений (не заводится, не работает).
Пример 3.2

ЕСЛИ <матрица значений регрессоров мультиколлинеарна> И сокращение числа регрессоров невозможно>, ТО <необходимо использование для построения линейной модели метода гребневой (ридж) регрессии> [20].

В данном случае атрибутами являются матрица значений ре-грессоров и число регрессоров, а значениями – мультиколлинеарность и сокращение числа регрессоров невозможно.

В рабочей памяти продукционной системы хранятся пары «атрибут – значение», истинность которых установлена в процессе решения конкретной задачи к текущему моменту времени. Содержание рабочей памяти изменяется в процессе решения задачи по мере срабатывания правил. Правило срабатывает, если при сопоставлении содержащихся
в рабочей памяти фактов с образцом правила имеет место совпадение. Для представления реальных знаний используются описания с помощью триплета «объект – атрибут – значение». С введением триплета правила из


БЗ могут срабатывать более одного раза в процессе одного логического вывода, поскольку одно правило может применяться к различным объектам.


Существует два типа продукционных систем – с прямым и обратным выводом. Прямой логический вывод реализует стратегию
от фактов к заключению или от данных к поиску цели. При обратном выводе выдвигаются гипотезы, которые могут быть подтверждены
или опровергнуты на основании фактов, поступающих в рабочую па-мять [3].


При использовании продукционной модели представления знаний БЗ состоит из набора правил, а программа, управляющая перебором правил, называется интерпретатором правил или машиной вывода. Интерпретатор правил – это программа, имитирующая логический вывод эксперта, пользующегося продукционной БЗ для интерпретации поступивших в систему данных [24].

Интерпретатор правил выполняет две функции:

  1. просмотр существующих данных из БД и правил из БЗ и добавление в БД новых фактов;

  2. определение порядка просмотра и применения правил. Этот механизм управляет процессом консультации, сохраняя для пользователя информацию о полученных заключениях, и запрашивает у него ин-формацию, когда для срабатывания очередного правила в БД оказывается недостаточно данных.

Механизм вывода представляет собой программу, включающую два компонента, один из которых реализует собственно вывод, а другой управляет этим процессом. Действие компонента вывода основано на применении правила, называемого modus ponens: «Если известно, что истинно утверждение А и существует правило вида «Если А, то В», то утверждение В также истинно». Таким образом, правила срабатывают, когда находятся факты, удовлетворяющие их левой части: если истинна посылка, то должно быть истинно и заключение. Компонент вывода должен функционировать даже при недостатке информации. Полученное решение может быть неточным, однако система не должна оста-навливаться из-за того, что отсутствует какая-либо часть входной ин-формации.

Управляющий компонент определяет порядок применения правил и выполняет следующие функции:

  1. Сопоставление – образец правила сопоставляется с имеющи-мися фактами.

  2. Выбор – если в конкретной ситуации могут быть применены сразу несколько правил, то из них выбирается одно, наиболее подходящее по заданному критерию (разрешение конфликта).

  3. Срабатывание – если образец правила при сопоставлении совпал с какими-либо фактами из БД, то правило срабатывает.

  4. Действие – БД подвергается изменению путем добавления в нее заключения сработавшего правила.


Цикл работы интерпретатора правил представлен на рис. 3.1.



Рис. 3.1. Цикл работы интерпретатора правил
В каждом цикле интерпретатор правил просматривает все правила, чтобы выявить те посылки, которые совпадают с известными на данный момент фактами из БД. После выбора правило срабатывает, его за-ключение заносится в БД, и цикл повторяется. В одном цикле может срабатывать только одно правило. Если несколько правил успешно сопоставлены с фактами, то интерпретатор производит выбор по опре-деленному критерию единственного правила, которое срабатывает в данном цикле. Совокупность отобранных правил составляет конфликтное множество. Работа интерпретатора правил зависит только от состояния БД и состава БЗ.

От выбранной стратегии решения зависит порядок применения и срабатывания правил. Процедура вывода сводится к определению на-правления поиска и способа его осуществления. Процедуры, реализующие поиск, обычно «зашиты» в механизм вывода, поэтому в большинстве систем когнитологи не имеют к ним доступа и, следовательно, не могут в них ничего изменить.

При разработке стратегии управления выводом важны:

исходная точка в пространстве состояний. От выбора этой точки зависит метод осуществления поиска – в прямом или обратном на-правлении;

метод и стратегия перебора – поиск в глубину; поиск в ширину; разбиение на подзадачи.

В системах с прямым выводом по известным фактам отыскивается заключение, которое из этих фактов следует. Прямой вывод часто называют выводом, управляемым данными. В системах с обратным выводом вначале выдвигается некоторая гипотеза, а затем механизм вывода как бы возвращается назад, переходя к фактам и пытаясь найти те из них, которые подтверждают гипотезу. Если она оказалась правильной, то выбирается следующая гипотеза, детализирующая первую и являющаяся по отношению к ней подцелью. После этого отыскиваются факты, подтверждающие истинность подчиненной гипотезы. Вывод такого типа называется управляемым целями. Существуют системы, в которых вывод основывается на сочетании упомянутых методов, – обратного и ограниченного прямого. Такой комбинированный метод получил название циклического.

Пример 3.3

Пусть задан фрагмент продукционной БЗ, описывающий ситуацию «Покупка легкового автомобиля» в виде шести правил [19]:

П1. ЕСЛИ <у покупателя много денег И он желает купить автомобиль>, ТО <нужно ехать в автосалон>;


П2. ЕСЛИ <у покупателя мало денег И он желает купить автомобиль>, ТО <нужно ехать на вторичный автомобильный рынок>;

П3. ЕСЛИ <у покупателя есть время И нужно ехать в автосалон>, ТО <необходимо определиться с маркой автомобиля>;

П4. ЕСЛИ <у покупателя есть время И нужно ехать на вторичный автомобильный рынок>, ТО <необходимо определиться с пробегом автомобиля>;

П5. ЕСЛИ <покупатель приехал в автосалон И определился с мар-кой автомобиля>, ТО <нужно произвести покупку нового автомобиля>;

П6. ЕСЛИ <покупатель приехал на вторичный рынок автомобилей И определился с пробегом автомобиля>, ТО <нужно произвести покупку подержанного автомобиля>.

Предположим, что в БД интеллектуальной системы имеются следующие факты:

Ф1. У покупателя много денег;

Ф2. Покупатель желает купить автомобиль;

Ф3. У покупателя есть время.

В случае реализации прямого (индуктивного) логического вы-
вода необходимо просматривать все правила из БЗ и выбирать те, у которых выполняются условия (антецедент) из БД. Если срабатываает несколько правил, то формируется конфликтное множество, подлежащее разрешению. Действие (консеквент) выбранного правила добавляется
в БД.


Проход 1. Срабатывает только правило П1. Консеквент «нужно ехать в автосалон» добавляется в БД.

Проход 2. Срабатывает только правило П3. Консеквент «необходимо определиться с маркой автомобиля» добавляется в БД.

Проход 3. Срабатывает только правило П5. Получена рекомендация: «произвести покупку нового автомобиля». При добавлении данного консеквента в БД четвертый проход подтвердит, что ни одно правило больше не сработало.

В случае реализации обратного (дедуктивного) логического вывода при просмотре БЗ следует искать то правило, у которого выдвинутая гипотеза (цель) находится в правой части. Затем, отыскав такое правило, нужно проверить наличие его условий из левой части в БД. Если какого-либо условия (антецедента) там нет, то оно становится новой подцелью на текущей итерации.

Пусть от покупателя в БД интеллектуальной системы поступили следующие факты:

Ф1. У покупателя мало денег;

Ф2. Покупатель желает купить автомобиль;

Ф3. У покупателя есть время.

Покупателем выдвинута цель – «покупка подержанного авто-мобиля».

Проход 1. Просматриваются все правила из БЗ и ищется цель в правой части. Подходит только правило П6. Формируется новая подцель – «ехать на вторичный автомобильный рынок».


Проход 2. Ищется новая подцель в правой части. Подходит только правило П2. В БД добавляется новый факт – «ехать на вторичный автомобильный рынок».

Проход 3. Выполняется для предыдущей подцели, которая в данном случае является главной, – «покупка подержанного автомобиля». Срабатывает только правило П6. Новая подцель – «определиться с пробегом».

Проход 4. Ищется новая подцель в правой части продукционного правила. Подходит только правило П4. В БД добавляется новый факт – «определиться с пробегом».

Проход 5. Выполняется для главной цели – «покупка по-держанного автомобиля». Срабатывает правило П6. Все условия есть в БД. Выдается рекомендация: «произвести покупку подержанного авто-мобиля».
В системах, БЗ которых насчитывают сотни правил, желательным является использование стратегий управления выводом, позволяющей минимизировать время поиска решения и тем самым повысить эффективность вывода. К числу таких стратегий относятся поиск в глубину, поиск в ширину, разбиение на подзадачи и альфа-бета-алгоритм.

При поиске в глубину в качестве очередной подцели выбирается та, которая соответствует следующему, более детальному уровню описания задачи. При поиске в ширину вначале анализируют все факты (симптомы), находящиеся на одном уровне пространства состояний. Разбиение на подзадачи подразумевает выделение подзадач, решение которых рас-сматривается как достижение промежуточных целей на пути к конечной цели. Если удастся правильно понять сущность задачи и оптимально разбить ее на систему иерархически связанных целей и соответствующих подцелей, то можно добиться того, что путь к ее решению в пространстве поиска будет минимальным. Альфа-бета-алгоритм позволяет умень-
шить пространство состояний путем удаления ветвей, неперспектив-
ных для успешного поиска. Затем просматриваются только те вершины,
в которые можно попасть в результате следующего шага, после
чего неперспективные направления исключаются. Данный алгоритм на-
шел широкое применение в системах, ориентированных на различные игры.

Продукционная модель представления знаний используется
более чем в 80 % ЭС, поскольку обладает наглядностью, высокой модульностью, легкостью внесения дополнений и изменений, простотой программной реализации логического вывода. К недостаткам про-дукционных моделей следует отнести отличие от структуры знаний, свойственной человеку; неясность взаимных отношений правил; слож-ность оценки целостного образа знаний; низкую эффективность об-работки знаний. В настоящее время имеется большое число программ-ных средств (ПС), реализующих продукционный подход по построе-
нию БЗ (например, языки высокого уровня CLIPS, OPSS, «пустые»
ЭС EXSYS, Kappa, GURU, инструментальные системы KEE, ARTS, PIES).