Файл: Девятая. Проектирование асинхронных машин.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 379

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
(9.1)
В начале расчета двигателя все величины, входящие в (9.1), кро­ме синхронной угловой скорости, неизвестны. Поэтому расчет проводят, задаваясь на основании имеющихся рекомендаций значения­ми электромагнитных нагрузок (А и Вδ), коэффициентов (αδ, kВ и k), и приближенно определяют расчетную мощность Р'. Остаются два неизвестных (D и lδ), однозначное определение которых без до­полнительных условий невозможно. Таким условием является отно­шение lδ/D или более употребительное в расчетной практике отно­шение λ = lδ /τ. Это отношение в значительной степени определяет экономические данные машин, а также оказывает влияние на харак­теристики и условия охлаждения двигателей.

У большинства выпускаемых асинхронных двигателей общего назначения отношение λ, изменяется в достаточно узких пределах. Поэтому для определения D и lδ можно предварительно выбрать то или иное отношение λ, характерное для заданного исполнения и числа полюсов машины. Это позволит однозначно определить глав­ные размеры, исходя из (9.1). Однако внутренний диаметр статора непосредственно связан определенными размерными соотношения­ми с внешним диаметром статора Da, в свою очередь, определяю­щим высоту оси вращения h, значение которой при проектировании новых двигателей может быть принято только из стандартного ряда высот, установленных ГОСТом.

Внешний диаметр статора должен также соответствовать опре­деленным условиям, налагаемым требованиями раскроя листов электротехнической стали с наименьшими отходами при штампов­ке. С учетом этих требований при ручном расчете асинхронного двигателя более целесообразным является выбор главных размеров, основанный на предварительном определении высоты оси враще­ния, увязке этого размера с внешним диаметром статора и последу­ющем расчете внутреннего диаметра статора D.

В связи с этим выбор главных размеров проводят в следующей последовательности.

Высоту оси вращения предварительно определяют по рис. 9.18, а или б для заданных Р2 и 2р в зависимости от исполнения двигателя.

Из ряда высот осей вращения (см. табл. П 6.2) принимают бли­жайшее к предварительно найденному меньшему стандартному зна­чению Л. Следует иметь в виду
, что ГОСТ определяет стандартные высоты осей вращения независимо от назначения и конструктивно­го исполнения асинхронных двигателей, поэтому высота оси враще­ния любого проектируемого двигателя должна быть равна одному из этих значений.

Зависимость (9.1) показывает, что при одной и той же длине l мощность P' изменяется пропорционально D2. Поэтому машину при выбранной высоте оси вращения выгодно выполнять с возможно большим диаметром. Максимально возможный диаметр Dа должен быть Da ≤ 2(h – h1min), где h1min — минимальное расстояние от стали сердечника статора до опорной плоскости машины (рис. 9.19), включающее толщину корпуса bкорп и расстояние от корпуса до опорной плоскости h2. Если машина выполняется со сварной стани­ной, то допустимое расстояние h1min уменьшается. В том случае, когда h1 >> h1min, в нижней части корпуса оребренных двигателей ис­полнения со степенью защиты IP44 размещают несколько охлажда­ющих ребер, высота которых может быть меньше, чем у располо­женных на верхней и боковых частях корпуса.

Обычно расстояние h1 выбирают равным или несколько боль­шим h1min, значения которого для двигателей с различной высотой оси вращения h приведены на рис. 9.19. При выборе Da должно быть учтено также требование использования для штамповки рулонной или листовой электротехнической стали стандартных размеров с наименьшими отходами.

Рис. 9.18. Высота оси вращения h двигателей

различных мощности и частоты вращения:

а — со степенью защиты IP44;

б — со степенью защиты IP23
Внешние диаметры сердечников статоров двигателей серий в зависимости от высоты оси вращения при учебном проектировании могут быть приняты по данным табл. 9.8.


Рис. 9.19. К выбору наружного диаметра Dc статора (а).

Минимально допустимое расстояние h1 от сердечника

статора до опорной поверхности двигателя в зависи­мости

от высоты оси вращения двигателей со станиной (б):

1 — литой; 2 — сварной
Таблица 9.8. Внешние диаметры статоров асинхронных

двигателей различных высот оси вращения


h, мм

56

63

71

80

90

Da, мм

0,08— 0,096

0,1—1,08

0,116—0,122

0,131—0,139

0,149—0,157

h, мм

100

112

132

160

180

Da, мм

0,168—0,175

0,191-0,197

0,225—0,233

0,272—0,285

0,313—0,322

h, мм

200

225

250

280

315

255

Da, мм

0,349—0,359

0,392—0,406

0,437—0,452

0,52-0,53

0,59

0,66



Внутренний диаметр статора D в общем случае можно опреде­лить по внешнему диаметру, высотам ярма (ha) и зубцов (hz) статора:
D = Da 2(ha + hz).
На данном этапе расчета размеры ha и hz неизвестны. Поэтому для определения D используют эмпирические зависимости. При од­ном и том же уровне индукции на участках магнитопровода в маши­нах с одинаковым D высота ярма статора будет пропорциональна потоку, а следовательно, обратно пропорциональна числу полюсов машины (прямо пропорциональна полюсному делению). Принимая, что размеры пазов не зависят от числа полюсов машины, получаем приближенное выражение
D = KDDa. (9.2)
Значения коэффициентов КD, приведенные в табл. 9.9, характе­ризуют отношения внутренних и внешних диаметров сердечников статоров асинхронных двигателей серий 4А и АИ при различных числах полюсов и могут быть использованы для предварительного определения D вновь проектируемой машины.
Таблица 9.9. Отношение КD = D/Da, в асинхронных двигателях

в зависимости от числа полюсов


2p

2

4

6

8

10—12

КD

0,52—0,6

0,62—0,68

0,7—0,72

0,72—0,75

0,75—0,77


Далее находят полюсное деление τ, м:
τ = πD/2p (9.3)
и расчетную мощность Р, В • А:

P' = mIE = P2 (9.4)
где Р2 — мощность на валу двигателя, Вт; kE — отношение ЭДС об­мотки статора к номинальному напряжению, которое может быть приближенно определено по рис. 9.20.

Предварительные значения η и cos φ, если они не указаны в задании на проектирование, находятся по ГОСТу. Приближенные значения η и cos φ могут быть приняты по кривым рис. 9.21.

Предварительный выбор электромагнитных нагрузок А, А/м, и Bδ, Тл, должен быть проведен



Рис. 9.20. Значения коэффициента KE



Рис. 9.21. Примерные значения КПД и cos φ асинхронных двигателей:

а — со степенью защиты IP44 и мощностью до 30 кВт;

б — со степенью защиты IP44 и мощно­стью до 400 кВт;

в — со степенью защиты IP23
особо тщательно, так как они определяют не только расчетную длину сердечника, но и в значительной степени характеристики машины. При этом если главные размеры машины зависят от произведения АВδ [см. (9.1)], то на характеристики двигателя оказывает существенное влияние также и соотношение между этими величинами. Рекомендации по выбору А и Вδ представлены в виде кривых на рис. 9.22—9.24 для машин различных мощности и исполнения. На каждом из рисунков даются области их допустимых значений. При выборе конкретных значений А и Вδ в пределах рекомендуемой области следует, руководствуясь приведен­ными выше замечаниями, учитывать требования технического задания к хактеристикам проектируемого двигателя.

Коэффициент полюсного перекрытия αδ и коэффициент формы поля kВ в асинхронных машинах определяются степенью уплощения кривой поля в зазоре, возникающей при насыщении зубцов статора и ротора, и могут быть достаточно достоверно определены то­пь ко после расчета магнитной цепи. Поэтому для расчета магнитной цепи удобнее рассматривать синусоидаль­ное поле, а влияние уплощения учесть при расчете магнитного напряжения отдельных участков магнитной цепи.




Рис. 9.22. Электромагнитные нагрузки асинхронных двигателей

со степенью защиты IP44 при высоте оси вращения:

а – h ≥ 132 мм; б – h = 150…250 мм;

в – h ≥ 280 мм (с продуваемым ротором)


Рис. 9.23. Электромагнитные нагрузки асинхронных двигателей

со степенью защиты IP23 при высоте оси вращения:

а – h = 160…250 мм; б – h ≥ 280 мм;



Рис. 9.24. Электромагнитные нагрузки асинхрон­ных

двигателей высокого напряжения со степе­нью защиты IP23
Основываясь на этом, значения коэффициентов предварительно принимают равными:
αδ = 2/π ≈ 0,64; kВ = π/(2 ) = 1,11.
Предварительное значение обмоточного коэффициента k0e\ вы­бирают в зависимости от типа обмотки статора. Для однослойных обмоток koб1 = 0,95...0,96. Для двухслойных и одно-двухслойных об­моток при 2р = 2 следует принимать koб1 = 0,90... 0,91 и при большей полюсности koб1 = 0,91. ..0,92.

Синхронная угловая частота двигателя Ω, рад/с, рассчитывается по формуле
Ω = 2π или Ω = 2π (9.5)
где n1 — синхронная частота вращения, об/мин; f1 — частота пита­ния, Гц.

Из (9.1), с учетом значенияαδ , расчетная длина магнитопровода, м,
. (9.6)
Критерием правильности выбора главных размеров D и lδ слу­жит отношение λ = lδ /τ, которое обычно находится в пределах, пока­занных на рис. 9.25 для принятого исполнения машины. Если λ ока­зывается чрезмерно большим, то следует повторить расчет для ближайшей из стандартного рада большей высоты оси вращения А. Если К слишком мало, то расчет повторяют для следующей в стан­дартном раду меньшей высоты h.

На этом выбор главных размеров заканчивается. В результате проделанных вычислений получены значения высоты оси вращения h, внутреннего диаметра статора D, внешнего диаметра статора Dа, расчетной длины магнитопровода lδ и полюсного деления τ.

Рис. 9.25. Отношение λ = lδ /τ у двигателей исполнения

по степени защиты:

а – IP44; б – IP23
Для расчета магнитной цепи помимо lδ необходимо определить ценностью конструктивную длину и длину стали сердечников статора (l1 и lст1) и ротора (l2 и lст2). В асинхронных двигателях, длина сердечников которых не превышает 250. ..300 мм, радиальные вентиля­ционные каналы не делают. Сердечники шихтуются в один пакет. Для такой конструкции
l1 = lст1 =