Файл: Министерство транспорта российской федерации федеральное государственное образовательное учреждение высшего профессионального образования.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.11.2023
Просмотров: 167
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Xавл - сила волнового сопротивления.
Сила сопротивления трения Хатр возникает из-за вязкости воздуха. Выше мы рассматривали это свойство воздуха и выяснили, что у поверхности обтекаемого тела образуется тонкий пограничный слой, в котором возникают касательные напряжения трения т (см. формулу (3)). Из-за действия этих напряжений и возникает сила сопротивления трения.
Коэффициент сопротивления трения будет равен:
С„„=-Хр-. (41)
РV о
2 v
Сила сопротивления давления Ха двозникает из-за разности давлений, действующих на носовую и хвостовую части обтекаемого тела. Здесь также играет роль вязкость. В процессе обтекания профиля крыла (см. рис. 29), толщина пограничного слоя 8 постепенно нарастает от 0 (в передней критической точке А) до некоторого значения у задней кромки крыла. В результате задняя критическая точка В не реализуется, т.е. скорость потока на задней кромке не равна 0, как это имеет место быть в случае идеального газа. Вследствие этого статическое давление здесь будет несколько меньше полного давления, т.е. давления в точке А. Таким образом, возникнет перепад давлений, действующих на носовую и хвостовую части профиля. Результи-
35 рующая сила будет направлена в сторону хвостовой части, а значит будет создавать сопротивление движению летательного аппарата.
Рис. 29. Обтекание профиля крыла вязким газом
Коэффициент сопротивления давления будет равен:
с.д=-^-. (42)
Р” о
Т'43
Сила индуктивного сопротивления Xai появляется, когда на крыле самолета возникает подъемная сила. Реальное крыло самолета имеет конечный размах. Поэтому при возникновении перепада давлений над крылом и под ним частицы воздуха из зоны повышенного давления под крылом перетекают через боковые кромки в зону пониженного давления над крылом (см. рис. 30). В результате возникают вихри, уносимые набегающим потоком. Помимо уменьшения подъемной силы эти вихри создают также дополнительное лобовое сопротивление, называемое индуктивным, т.е. индуцируемым подъемной силой.
Рис. 30. Образование концевых вихрей на крыле конечного размаха
Понять природу возникновения силы индуктивного сопротивления можно, используя энергетический подход. Двигаясь вперед, крыло отдает воздуху часть своей кинетической энергии, совершая работу по закручиванию масс воздуха. Это эквивалентно воздействию на крыло некоторой силы, которая совершает равную по величине работу, создавая сопротивление движению крыла. Коэффициент индуктивного сопротивления в первом приближении можно оценить по формуле:
Сxai = —Суа . (43)
ЛЛ
Сила волнового сопротивления Хавл возникает при полетах самолетов на околозвуковых и сверхзвуковых скоростях. В данном курсе мы не будем рассматривать физику образования силы волнового сопротивления. Приведем лишь формулу для расчета коэффициента силы волнового сопротивления:
(44)
а вл
^ха вл тт о
Р^2 о
2
Перепишем формулу (40), перейдя к коэффициентам сил и приняв при этом, что полеты происходят на дозвуковых скоростях, т.е. без образования силы волнового сопротивления:
С ха С ха тр + С ха д + Cxai - (45)
Сумма первых двух слагаемых называется коэффициентом профильного сопротивления и обозначается Сха 1[р. Тогда выражение (45), учитывая формулу для коэффициента индуктивного сопротивления (43), можно записать в виде:
(46)
С = С +—С2 v ха ха пр ' . у а
ЯЛ
= /(ос) для симметричного и несимметричного профилей пока-
Коэффициенты профильного и индуктивного сопротивления зависят от угла атаки (последний - в гораздо большей степени). Поэтому и коэффициент силы лобового сопротивления также зависит от угла атаки. График зависимости
С
зап на рис. 31.
Рис. 31. Зависимость коэффициента силы лобового сопротивления от угла
атаки
Угол атаки, при котором коэффициент силы лобового сопротивления минимален, обозначается оссха min-
-
Аэродинамическое качество. Поляра
(47)
Аэродинамическим качеством называется отношение аэродинамической подъемной силы к силе лобового сопротивления или отношение соответствующих коэффициентов: у С 1а уа
а ^ха
Аэродинамическое качество является одной из важнейших характеристик, отражающих техническое совершенство самолета. Например, от аэродинамического качества в значительной степени зависит дальность полета. Ясно, поэтому, что при создании самолета, задаваясь величиной подъемной силы, стремятся уменьшить лобовое сопротивление, чтобы увеличить качество.
Из формулы (46) видно, что существует взаимосвязь между коэффициентами Cva и Сха. Эта зависимость называется полярой. На рис. 32 приведен график этой зависимости.
Рис. 32. Поляра крыла
Попытаемся найти такое сочетание значений Cva и Сга, при котором аэродинамическое качество будет максимальным. Это легко сделать графически, проведя касательную к поляре из начала координат. Тангенс угла наклона касательной будет равен максимальному значению аэродинамического качества: tg0 = Ктах . Коэффициент подъемной силы и угол атаки, соответствующие 7СП1ах, называются наивыгоднейшими и отмечаются индексом «НВ»: С уа нв ? СХ'НВ -
-
Аэродинамическая интерференция
Практика показывает, что сумма аэродинамических сил, действующих на изолированные части самолета, не равна аэродинамическим силам, действующим на самолет в целом. Это происходит из-за взаимного влияния частей самолета друг на друга в процессе обтекания их набегающим потоком воздуха. Такое явление называется аэродинамической интерференцией.
Интерференция возникает как между частями самолета, находящимися в непосредственном соприкосновении (например, крыло и фюзеляж), так и между разнесенными в пространстве (например, крыло и оперение).
Физическая сущность аэродинамической интерференции заключается в том, что одна из частей самолета вносит в поток возмущения, вызывающие искривление линий тока, которые обтекают другую часть, что приводит к изменению ее аэродинамических коэффициентов. Причем, как правило, это влияние является взаимным, т.е. части самолета испытывают влияние друг друга.
Влияние аэродинамической интерференции на характеристики самолета может быть как положительным, так и отрицательным. Поэтому при создании самолета стремятся снизить отрицательное влияние интерференции и развить положительное.
-
Аэродинамические рули и механизация крыла самолета
В процессе полета самолета должно обеспечиваться управление его пространственным положением. Для этой цели чаще всего используются аэродинамические рули. Рулями называются подвижные устройства, обтекаемые воздухом, предназначенные для изменения геометрических характеристик частей самолета с целью обеспечения его управления.
На самолетах нормальной схемы рули располагаются на оперении и крыле. Оперение самолета делится на вертикальное и горизонтальное. На дозвуковых самолетах оперение состоит из неподвижных частей и рулей. Неподвижная часть вертикального оперения называется килем, подвижная - рулем направления (см. рис. 33). Руль направления обеспечивает управление самолетом по углу рыскания (вокруг нормальной оси связанной системы координат). Неподвижная часть горизонтального оперения называется стабилизатором, а подвижная - рулем высоты. Руль высоты
39 обеспечивает управление самолетом по углу тангажа (вокруг поперечной оси).
Рис. 33. Расположение аэродинамических рулей на самолете
Для управления самолетом по углу крена (вокруг продольной оси) используются рули, носящие специфическое название - элероны. Эти рулевые поверхности располагаются на концевых частях крыла. Особенность элеронов состоит в том, что они всегда работают в паре, но отклоняются в противоположные стороны. Если левый элерон отклоняется вниз, то правый отклоняется вверх, и наоборот.
Принцип действия рулей состоит в том, что отклоняясь, они изменяют кривизну средней линии профиля, т.е. вогнутость профиля (см. рис. 34), вследствие чего происходит изменение аэродинамических сил, действующих на крыло или оперение (в зависимости от того, где эти рули расположены). Это, в свою очередь, вызывает изменение действующих на самолет моментов, что приводит к повороту самолета вокруг той или иной оси.
Рис. 34. Изменение кривизны профиля с помощью аэродинамического руля
Так, например, если на левом полукрыле отклонить элерон вверх, а на правом соответственно вниз (см. рис. 35), то на левой половине крыла подъемная сила уменьшится, а на правой - увеличится. В результате возникнет момент вокруг продольной оси самолета АЛ/Т, и самолет накренится на левое полукрыло.
Рис. 35. Создание момента крена с помощью элеронов
Кроме рулей самолет имеет, как правило, еще целый ряд подвижных устройств, которые также предназначены для изменения его геометрических характеристик. У современных самолетов внешние формы крыльев ориентированы на достижение высоких крейсерских скоростей полета, это приводит к тому, что крылья на режимах взлета и посадки, когда скорости близки к минимальным, не создают достаточной подъемной силы. Чтобы устранить этот недостаток применяют механизацию крыла.
Механизацией крыла называются устройства, предназначенные для изменения аэродинамических характеристик крыла с целью увеличения подъемной силы на режимах взлета и посадки.