ВУЗ: Казахский национальный медицинский университет им. С.Д. Асфендиярова
Категория: Учебное пособие
Дисциплина: Медицина
Добавлен: 03.02.2019
Просмотров: 6912
Скачиваний: 13
Через систему ГАМК опосредованы эффекты и некоторых противоэпилепти-ческих средств (фенобарбитал, натрия вальпроат). Один из агонистов ГАМКД-рецепторов (THIP) вызывает анальгетический эффект.
С помощью фармакологических веществ можно также влиять на синтез и биотрансформацию, нейрональный и глиальный захват ГАМК, изменяя ее содержание в ЦНС.
ГАМ Кв-рецепторы изучены менее детально. Расположены они на пост- и пре-синаптической мембранах. Имеются данные о том, что посредством G-белка ГАМ Кв-рецепторы связаны с аденилатциклазой. Стимуляция этого подтипа рецепторов приводит к повышению содержания цАМФ, что уменьшает проницаемость ионных каналов для Са2+. Воздействие ГАМК на пост- и пресинаптические ГАМКВ-рецепторы сопровождается тормозным эффектом, но механизм его не выяснен.
Лекарственные
средства, регулирующие
функции... <--
1 Агонистом каинатных рецепторов является каиновая кислота (аминокислота, выделенная из морских водорослей). В больших концентрациях обладает нейротоксическим эффектом, разрушая тела нейронов, имеющих глутаматные рецепторы.
Из агонистов ГАМКв-рецепторов нашел применение препарат баклофен. Он используется для снижения повышенного тонуса скелетных мышц и обладает некоторой болеутоляющей активностью. Синтезированы антагонисты ГАМКВ-рецепторов (факлофен, 2-оксисаклофен), которые используются только в экспериментальной медицине.
К числу тормозных медиаторов относится также гл и ци н, который в наибольшем количестве содержится в сером веществе спинного мозга. Аналогично ГАМК он увеличивает проницаемость ионофоров для ионов хлора, вызывает гиперполяризацию, что сопровождается тормозным эффектом. Глициновые рецепторы блокируются стрихнином, чем, собственно, и объясняется механизм его судорожного действия. Высвобождение глицина из нервных окончаний блокируется столбнячным токсином. Подобно глицину действует и р-аланин, но его эффект не устраняется стрихнином.
Возбуждающие эндогенные аминокислоты L-глутамат и, возможно, L-ac-партат также рассматриваются в числе нейромедиаторов или нейромодуляторов. Аналогичное действие оказывает синтетическое соединение N-метил-О-аспар-тат (NMDA).
Глутамат, взаимодействуя с глутаматными рецепторами, увеличивает проницаемость мембраны для ионов натрия, вызывает деполяризацию и возбуждающий эффект. Медиаторная функция глутамата показана для гиппокампа, обонятельного тракта, кортикостриарных путей. Рецепторы возбуждающих аминокислот гетерогенны. Выделяют 3 подтипа ионотропных рецепторов: NMDA, каинатные1 и АМРА-рецепторы. Имеются также метаботропные глутаматные рецепторы.
В последние годы большое внимание привлекли NMDA-рецепторы. Это связано с тем, что их блокирование (например, дизоцилпином, ранее известным как вещество МК-801) предупреждает в эксперименте дегенерацию нейронов головного мозга при ишемии, что в перспективе может иметь важное практическое приложение (при ишемии мозга, инсультах). Кроме того, установлено, что так называемый диссоциативный анестетик кетамин является антагонистом NMDA-рецепторов. Противопаркинсонический препарат мидантан также блокирует эти рецепторы. Дальнейшее исследование возможностей фармакологической регуляции медиаторного действия возбуждающих аминокислот представляет несомненный интерес для изыскания противоэпилептических средств, психотропных препаратов, веществ, улучшающих память.
Важной группой медиаторов/модуляторов являются пептиды. К настоящему времени из тканей организма выделено несколько десятков пептидов, функции которых широко изучаются. Образуются биологически активные нейропеп-тиды из предшественников, которые находятся в телах нейронов, где происходит их протеолиз. Активные метаболиты путем аксонального транспорта поступают к окончаниям нейронов, где и функционируют в качестве нейромедиаторов, ко-медиаторов или нейромодуляторов.
Каждый из пептидов взаимодействует со специфическими рецепторами, которые могут иметь довольно широкую локализацию (в центральной и периферической нервной системе, в тканях периферических органов). Ряд пептидов одновременно выполняет роль и гормонов, и нейромедиаторов (например, окситоцин). Наиболее детально изучена группа опиоидных пептидов — лейэнкефалин, метэн-кефалин, р-эндорфин, динорфины, эндоморфины. Показано, что они специфи
'Помимо ЦНС, гистаминовые Н,-рецепторы находятся также в желудочно-кишечном тракте (их стимуляция на пресинаптических окончаниях уменьшает высвобождение гистамина, что понижает секрецию хлористоводородной кислоты желудка; они участвуют также в гастропротекторном действии), в сердечно-сосудистой системе (активация пресинаптических гистаминовых Н,-рецепторов подавляет адренергические влияния), в верхних дыхательных путях (противовоспалительный эффект).
Возможности фармакотерапевтического использования агонистов и антагонистов Н3-рецепто-ров периферической локализации пока неясны.
чески взаимодействуют с разными подтипами опиоидных рецепторов (ц-, б-, к-рецепторами). Взаимодействие агонистов с каждым подтипом опиоидных рецепторов сопровождается определенными эффектами (см. главу 8; 8.1). Известно, что к числу опиоидов экзогенного происхождения относятся опиоидные анальгетики. Синтезированы и антагонисты опиоидных рецепторов (например, налоксон).
Предполагается, что роль нейромодуляторов выполняют также пурины -пуриновые нуклеотиды (АДФ, АМФ) и аденозин. Как уже отмечалось, имеются специальные пуриновые рецепторы (пост- и пресинаптические), которые подразделяют на Р,-рецепторы (более чувствительны к аденозину, чем к АТФ) и Р2-рецепторы (более чувствительны к АТФ). Р,-рецепторы подразделяют на адено-зиновые А,- и А2-рецепторы. Пурины оказывают на нейроны ЦНС в основном угнетающее действие. Антагонисты Р(-реиепторов — метилксантины (кофеин, теофиллин и др.) — стимулируют ЦНС.
Обсуждается вопрос об участии гистамина в межнейронной передаче возбуждения. В ЦНС обнаружены гистаминовые Н,-, Н2- и Н3-рецепторы. Гистамин при ионофоретическом подведении к нейронам мозга может вызывать как возбуждающий, так и тормозной эффекты. О гистаминовых Н,- и Н2-рецепторах см. в главах 15.3 и 25.1.
Н3-рецепторы первоначально были обнаружены на гистаминергических нейронах ЦНС в виде пресинаптических рецепторов. Последние регулируют образование и высвобождение гистамина. Гистаминсодержашие нейроны в основном локализуются в заднем гипоталамусе (в туберомамиллярном ядре) и проецируются к разным областям ЦНС (коре больших полушарий, стриатуму, гиппокампу и др.). Помимо угнетающего влияния на высвобождение гистамина (роль ауторе-цепторов), пресинаптические Н3-рецепторы участвуют в регуляции продукции и ряда других медиаторов/модуляторов (ацетилхолина, ГАМК, дофамина, глутама-та, серотонина, норадреналина), т.е. функционируют и как пресинаптические гетерорецепторы. Распределение гистаминсодержащих нейронов и гистаминовых рецепторов в ЦНС свидетельствует об участии гистамина в регуляции многих функций ЦНС. Так, гистамин, несомненно, является одним из компонентов регуляции цикла сон—бодрствование. В частности, в этом процессе принимают участие Hj-рецепторы. Известно, что блокаторы этого подтипа рецепторов, проникающие в ЦНС, оказывают седативное действие (димедрол, дипразин). Показано, что в эксперименте некоторые агониеты Н3-рецепторов удлиняют «медленный» сон.
Отмечено также, что гнетаминергическая система принимает участие в регуляции таких процессов, как обучение, запоминание. Показано, например, что антагонисты Н3-рецепторов могут улучшать мыслительные функции.
Следует также отметить важную роль гистамина в развитии эпилептических судорог. При определенных экспериментальных моделях судорог некоторые антагонисты Н,-рецепторов и агониеты Н3-реиепторов оказывали противосудорож-ное действие. Кроме того, противогистаминные средства могут оказаться полезными при лечении ожирения1.