Файл: Наследственность с точки зрения молекулярной биологии. Строение нуклеиновых кислот. Роль нуклеиновых кислот. Понятие гена. Репликация, транскрипция, трансляция. Понятие промотора и оперона. Особенности экспрессии генов у прокариот и эукариот.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.11.2023
Просмотров: 134
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
клонируемой(«чужеродной») ДНК,содержащий интересующие исследователя генетические элементы, которые нужно перенести в реципиентную клетку (клетка-хозяин). Генетическая инженерия возникла на стыке многих биологических дисциплин: молекулярной генетики, энзимологии, биохимии нуклеиновых кислот и др. Первая рекомбинантная ДНК получена в 1972 г. (П.Бергом с сотр.) и была составлена из фрагмента ДНК обезьяньего вируса ОВ40 и бактериофага λdvgal с галактозным опероном Е. coli. Формально 1972 г. следует считать датой рождения генетической инженерии.
Технология конструирования и работы с рекомбинантными ДНК
Сущность генетической инженерии сводится к целенаправленному конструированию искусственных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата реципиентного организма и, кроме того, они привносят в него новые генетические и физиолого-биохимические свойства, полезные для человека. К числу таких свойств можно отнести синтез аминокислот и белков, гормонов, ферментов, витаминов и др. Источником генетического материала могут выступать различные организмы не способные в обычных, природных условия, к обмену генетической информацией с организмами - реципиентами.
В настоящее время не существует единого, универсального набора методик, но чаще всего эксперименты с рекомбинантной ДНК проводят по следующей схеме.
1.Из организма - донора нужных генов - экстрагируют нативную ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК-мишень, чужеродная ДНК), подвергают ее избирательному ферментативному гидролизу по определенным участкам (расщепляют, разрезают) с помощью соответствующих рестриктаз и соединяют (лигируют, сшивают) с другой ДНК (вектор для клонирования, клонирующий вектор) с образованием новой, рекомбинантной молекулы (конструкция «клонирующий вектор - встроенная ДНК»).
2. Эту конструкцию вводят в клетку-хозяина (реципиент), где она реплицируется и передается потомкам. Этот процесс называется трансформацией.
3.Идентифицируют и отбирают клетки, несущие рекомбинантную ДНК (трансформированные клетки).
4.Получают специфический белковый продукт, синтезированный клетками-хозяевами, что служит подтверждением клонирования искомого гена.
Рассмотрим эти процессы поподробнее.
Расщепление ДНК в специфических участкахнуклеотидных последовательностей осуществляется особыми бактериальными внутриклеточными ферментами - рестрикцирующими нуклеазами, способными разрушить чужеродную ДНК.
Каждый фермент, способный разрушить чужеродную ДНК, опознает в ней специфическую последовательность из 4-6 нуклеотидов. Соответствующие последовательности в геноме продуцирующих их бактерий замаскированы метилированием остатков дезоксирибозы с помощью ферментов-метилаз.
Согласно номенклатуре, предложенной X. Смитом и Д. Натансоном, название рестриктазы складывается из трех букв: первая обозначает родовое название, две последующие - первые буквы вида.
ДНК со смещением на несколько нуклеотидов, то на концах фрагментов образуются короткие одноцепочечные участки, способные образовывать комплементарные пары оснований с любым другим одноцепочечным участком, полученным с помощью того же фермента (“липкие концы”). Если разрыв происходит без смещения, то образуются фрагменты ДНК c “тупыми концами”. Один из важнейших этапов конструирования молекулы рекомбинантной ДНК является лигирование (или сшивание) генов с помощью фермента ДНК-лигазы. Сшивание фрагментов ДНК, содержащих нужные гены, может проходить как по “липким”, так и по “тупым” концам. Однако эффективность сшивки по “тупым” концам ниже чем по “липким”.
При отсутствии комплиментарных “липких” концов у сшиваемых фрагментов их достраивают, т.е. синтезируют искусственно ферментативным путем. Для этой цели применяют так называемые линкеры (или переходники) – короткие участки ДНК, имеющие разные “липкие” концы, комплиментарные сшиваемым фрагментам.
После того как рекомбинантная ДНК сшита, ее можно ввести в живые клетки. Но поскольку она не способна к самовоспроизведению, ее быстро разрушат внутриклеточные нуклеазы. Для того чтобы рекомбинантная ДНК стала составной частью генетического аппарата клетки, она должна либо встроиться (интегрироваться) в ее геном (в хромосому) и реплицироваться за его счет, либо быть способной к автономной репликации. Принято молекулы ДНК, способные акцептировать чужеродную ДНК и автономно реплицироваться, называть векторными молекулами. К числу векторов относят плазмиды, бактериофаги, вирусы животных. Векторы должны обладать следующими особенностями:
1. Иметь субстратные участки для определенных эндонуклеаз рестрикции, в которые после их разрезания можно встроить нужный ген.
2. Иметь свойства репликона, т.е самовоспроизводиться.
3. Содержать один или несколько маркерных генов, которые после проникно-вения вектора в клетку придают ей фенотип, свидетельствующий о присутствии вектора.
В частности, для бактериальных векторов в качестве маркерных генов чаще всего используются гены, вызывающие устойчивость клеток к некоторым антибиотикам.
4. Иметь малый размер и способность проникать через клеточную оболочку
Таким образом, все векторы обеспечивают репликацию встроенных генов, их экспрессию, интеграцию в хромосому клетки и т.д.
Чаще других в генетической инженерии в качестве векторов используют плазмиды. Плазмидаминазывают специфические бактериальные репликоны (внехромосомные элементы наследственности), способные к длительному автономному существованию и стабильно наследуемые. Они представляют собой двуцепочечные кольцевые молекулы ДНК с вариабельными молекулярными массами. По размеру они соответствуют 1 - 3 % от хромосомы бактериальной клетки. Плазмиды разделяют на конъюгативные, способные сами перенестись в реципиентные клетки с помощью конъюгации, и неконъюгативные, не обладающие этим свойством. Они детерминируют разные свойства: резистентность к антибиотикам (R-плазмиды); биодеградацию (D-плазмиды) и др. Например, плазмиды стафилококков несут гены устойчивости к пенициллину, соединениям ртути и др. Гены устойчивости к тяжелым металлам обнаружены также в составе R-плазмид Е. coli.
Особое место в генетическом манипулировании занимает плазмида (ColE1), относящаяся к группе колициногенных плазмид Е.coli. ColE1 реплицируется независимо от хромосомы и присутствует в количестве примерно 24 копий на клетку. Ее широко используют благодаря селективному маркеру (способность к синтезу антибиотика колицина) в качестве вектора для клонирования фрагментов про- и эукариотической ДНК в Е. coli. Плазмидные векторы в настоящее время чрезвычайно разнообразны за счет следующих свойств:
1.Наличие большого количества участков рестрикции, отвечающих различным рестриктазам.
2.Возможность уменьшения размеров плазмиды вследствие изъятия участков, не обязательных для репликации и замены их клонируемыми генами.
3.Гибридизации векторов одного рода с другими векторами или природными плазмидами (например, получены
гибридные векторыкомбинацией плазмиды и фага λ(при этом вновь сконструированная рекомбинантная ДНК должна сохранить репликационные свойства исходной плазмиды);
4.Наличие селективных генетических маркеров, позволяющих вести отбор рекомбинантных клонов.
Эукариотические вирусыдо сих пор нашли более скромное применение в качестве векторов. Практически используются только онкогенный вирус SV 40 и его производные. Все эти векторы - дефектные вирусы, не способные давать полноценные вирусные частицы в клетке хозяина. Клонируемую ДНК можно вводить и в другие репликоны, способные размножаться в клетках, например бактериофаги. Чаще всего из известных фагов в качестве векторов применяют сконструированные производные фага λи фагов М13 и fd. В векторах на основебактериофага λ используется его особенность, состоящая в том, что большая часть его ДНК не участвует в размножении фага в клетке и может быть удалена . Это позволяет вводить вместо нее чужеродную, клонируемую ДНК в ДНК фага λ и использовать его в качестве вектора.
Векторные плазмиды и векторные вирусы со встроенными чужеродными генами часто называют гибридными (или химерными) плазмидами (или фагами). После конструирования рекомбинантных ДНК их с помощью трансформации вводят в реципиентный организм: бактериальную, грибную, растительную или животную клетку. Трансформация предусматривает предварительную обработку клеток соединениями, обусловливающими проникновение ДНК внутрь клеток (раствор СаС12) за счет увеличения проницаемости клеточной стенки, с последующим их помещением в селективирующую среду, в которой способны существовать только клетки, получившие векторную молекулу, например в среду с определенным антибиотиком. Другим способом увеличения проницаемости клеточной стенки является электропорация, когда клеточную суспензию обрабатывают короткими импульсами переменного тока высокого напряжения (порядка 2500 вольт). После такой обработки эффективность трансформации повышается, в зависимости от размеров плазмид, в 106 – 109 раз.
Процесс инфицирования клеток с помощью чужеродных ДНК, приводящий к образованию зрелого фагового потомства, назван
трансфекцией.
Однако эффективность проникновения экзогенной ДНК в клетку довольно низка. Поэтому среди бактерий, подвергшихся трансформации, только небольшая часть оказывается трансформированной (обычно одна из тысячи). Кроме того, часть этих бактерий может содержать исходную, не трансформированную плазмиду. Отделение клеток, содержащих рекомбинантную ДНК, от общей массы осуществляется в процессе клонирования. Для клонирования трансформированную бактериальную суспензию низкой концентрации выливают на твердую питательную среду, например на агар или чаще на нитроцеллюлозные фильтры, помещенные на чашку Петри с питательной средой, из расчета 5 - 10 бактерий на 1 см2 поверхности. Бактериальная клетка на поверхности фильтра начинает делиться с образованием в итоге маленькой колонии, похожей на шляпку гриба. Эта колония называется клоном,причем из каждой клетки образуется свой клон, все клетки которого имеют свойства бактерии-родоначальника.
Отбор бактерий-трансформантов можно продемонстрировать, используя рассмотренную ранее плазмиду pBR322, содержащую два гена устойчивости к тетрациклину и ампициллину. Для отбора этих бактерий в питательную среду добавляют антибиотик - или ампициллин, или тетрациклин в зависимости от того, какой из генов (blа или tet) остался интактным (неповрежденным) после введения чужеродной ДНК. На такой среде клоны образуют клетки только с плазмидами (рекомбинантными и нерекомбинантными), а все остальные погибают. Для отделения рекомбинантных бактерий от исходных используют следующую технологию. К фильтру с исходными колониями прижимают свежий нитроцеллюлозный фильтр (фильтр-реплика), который затем переносят на чашку Петри с аналогичной питательной средой, но, содержащей антибиотик, ген устойчивости к которому был разрушен при создании рекомбинантов. На этих фильтрах дают клоны только те бактерии, которые содержат исходную плазмиду, а рекомбинантные бактерии их не образуют. Анализируя расположение клонов на исходном фильтре, и фильтре-реплике, выделяют колонии, содержащие трансформированные клетки.
При поиске рекомбинантных клонов успешно применяют метод радиоавтографии, основанный на способности двух любых одноцепочечных комплиментарных фрагментов ДНК спариваться (гибридизоваться) между собой. Если один фрагмент (ДНК-зонд, гибридизационный зонд) содержит радиоактивную метку (обычно изотоп фосфора 32 или иода 125), то радиоактивной будет и гибридизованная молекула ДНК или ее фрагмент.
Технология конструирования и работы с рекомбинантными ДНК
Сущность генетической инженерии сводится к целенаправленному конструированию искусственных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата реципиентного организма и, кроме того, они привносят в него новые генетические и физиолого-биохимические свойства, полезные для человека. К числу таких свойств можно отнести синтез аминокислот и белков, гормонов, ферментов, витаминов и др. Источником генетического материала могут выступать различные организмы не способные в обычных, природных условия, к обмену генетической информацией с организмами - реципиентами.
В настоящее время не существует единого, универсального набора методик, но чаще всего эксперименты с рекомбинантной ДНК проводят по следующей схеме.
1.Из организма - донора нужных генов - экстрагируют нативную ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК-мишень, чужеродная ДНК), подвергают ее избирательному ферментативному гидролизу по определенным участкам (расщепляют, разрезают) с помощью соответствующих рестриктаз и соединяют (лигируют, сшивают) с другой ДНК (вектор для клонирования, клонирующий вектор) с образованием новой, рекомбинантной молекулы (конструкция «клонирующий вектор - встроенная ДНК»).
2. Эту конструкцию вводят в клетку-хозяина (реципиент), где она реплицируется и передается потомкам. Этот процесс называется трансформацией.
3.Идентифицируют и отбирают клетки, несущие рекомбинантную ДНК (трансформированные клетки).
4.Получают специфический белковый продукт, синтезированный клетками-хозяевами, что служит подтверждением клонирования искомого гена.
Рассмотрим эти процессы поподробнее.
Расщепление ДНК в специфических участкахнуклеотидных последовательностей осуществляется особыми бактериальными внутриклеточными ферментами - рестрикцирующими нуклеазами, способными разрушить чужеродную ДНК.
Каждый фермент, способный разрушить чужеродную ДНК, опознает в ней специфическую последовательность из 4-6 нуклеотидов. Соответствующие последовательности в геноме продуцирующих их бактерий замаскированы метилированием остатков дезоксирибозы с помощью ферментов-метилаз.
Согласно номенклатуре, предложенной X. Смитом и Д. Натансоном, название рестриктазы складывается из трех букв: первая обозначает родовое название, две последующие - первые буквы вида.
ДНК со смещением на несколько нуклеотидов, то на концах фрагментов образуются короткие одноцепочечные участки, способные образовывать комплементарные пары оснований с любым другим одноцепочечным участком, полученным с помощью того же фермента (“липкие концы”). Если разрыв происходит без смещения, то образуются фрагменты ДНК c “тупыми концами”. Один из важнейших этапов конструирования молекулы рекомбинантной ДНК является лигирование (или сшивание) генов с помощью фермента ДНК-лигазы. Сшивание фрагментов ДНК, содержащих нужные гены, может проходить как по “липким”, так и по “тупым” концам. Однако эффективность сшивки по “тупым” концам ниже чем по “липким”.
При отсутствии комплиментарных “липких” концов у сшиваемых фрагментов их достраивают, т.е. синтезируют искусственно ферментативным путем. Для этой цели применяют так называемые линкеры (или переходники) – короткие участки ДНК, имеющие разные “липкие” концы, комплиментарные сшиваемым фрагментам.
После того как рекомбинантная ДНК сшита, ее можно ввести в живые клетки. Но поскольку она не способна к самовоспроизведению, ее быстро разрушат внутриклеточные нуклеазы. Для того чтобы рекомбинантная ДНК стала составной частью генетического аппарата клетки, она должна либо встроиться (интегрироваться) в ее геном (в хромосому) и реплицироваться за его счет, либо быть способной к автономной репликации. Принято молекулы ДНК, способные акцептировать чужеродную ДНК и автономно реплицироваться, называть векторными молекулами. К числу векторов относят плазмиды, бактериофаги, вирусы животных. Векторы должны обладать следующими особенностями:
1. Иметь субстратные участки для определенных эндонуклеаз рестрикции, в которые после их разрезания можно встроить нужный ген.
2. Иметь свойства репликона, т.е самовоспроизводиться.
3. Содержать один или несколько маркерных генов, которые после проникно-вения вектора в клетку придают ей фенотип, свидетельствующий о присутствии вектора.
В частности, для бактериальных векторов в качестве маркерных генов чаще всего используются гены, вызывающие устойчивость клеток к некоторым антибиотикам.
4. Иметь малый размер и способность проникать через клеточную оболочку
Таким образом, все векторы обеспечивают репликацию встроенных генов, их экспрессию, интеграцию в хромосому клетки и т.д.
Чаще других в генетической инженерии в качестве векторов используют плазмиды. Плазмидаминазывают специфические бактериальные репликоны (внехромосомные элементы наследственности), способные к длительному автономному существованию и стабильно наследуемые. Они представляют собой двуцепочечные кольцевые молекулы ДНК с вариабельными молекулярными массами. По размеру они соответствуют 1 - 3 % от хромосомы бактериальной клетки. Плазмиды разделяют на конъюгативные, способные сами перенестись в реципиентные клетки с помощью конъюгации, и неконъюгативные, не обладающие этим свойством. Они детерминируют разные свойства: резистентность к антибиотикам (R-плазмиды); биодеградацию (D-плазмиды) и др. Например, плазмиды стафилококков несут гены устойчивости к пенициллину, соединениям ртути и др. Гены устойчивости к тяжелым металлам обнаружены также в составе R-плазмид Е. coli.
Особое место в генетическом манипулировании занимает плазмида (ColE1), относящаяся к группе колициногенных плазмид Е.coli. ColE1 реплицируется независимо от хромосомы и присутствует в количестве примерно 24 копий на клетку. Ее широко используют благодаря селективному маркеру (способность к синтезу антибиотика колицина) в качестве вектора для клонирования фрагментов про- и эукариотической ДНК в Е. coli. Плазмидные векторы в настоящее время чрезвычайно разнообразны за счет следующих свойств:
1.Наличие большого количества участков рестрикции, отвечающих различным рестриктазам.
2.Возможность уменьшения размеров плазмиды вследствие изъятия участков, не обязательных для репликации и замены их клонируемыми генами.
3.Гибридизации векторов одного рода с другими векторами или природными плазмидами (например, получены
гибридные векторыкомбинацией плазмиды и фага λ(при этом вновь сконструированная рекомбинантная ДНК должна сохранить репликационные свойства исходной плазмиды);
4.Наличие селективных генетических маркеров, позволяющих вести отбор рекомбинантных клонов.
Эукариотические вирусыдо сих пор нашли более скромное применение в качестве векторов. Практически используются только онкогенный вирус SV 40 и его производные. Все эти векторы - дефектные вирусы, не способные давать полноценные вирусные частицы в клетке хозяина. Клонируемую ДНК можно вводить и в другие репликоны, способные размножаться в клетках, например бактериофаги. Чаще всего из известных фагов в качестве векторов применяют сконструированные производные фага λи фагов М13 и fd. В векторах на основебактериофага λ используется его особенность, состоящая в том, что большая часть его ДНК не участвует в размножении фага в клетке и может быть удалена . Это позволяет вводить вместо нее чужеродную, клонируемую ДНК в ДНК фага λ и использовать его в качестве вектора.
Векторные плазмиды и векторные вирусы со встроенными чужеродными генами часто называют гибридными (или химерными) плазмидами (или фагами). После конструирования рекомбинантных ДНК их с помощью трансформации вводят в реципиентный организм: бактериальную, грибную, растительную или животную клетку. Трансформация предусматривает предварительную обработку клеток соединениями, обусловливающими проникновение ДНК внутрь клеток (раствор СаС12) за счет увеличения проницаемости клеточной стенки, с последующим их помещением в селективирующую среду, в которой способны существовать только клетки, получившие векторную молекулу, например в среду с определенным антибиотиком. Другим способом увеличения проницаемости клеточной стенки является электропорация, когда клеточную суспензию обрабатывают короткими импульсами переменного тока высокого напряжения (порядка 2500 вольт). После такой обработки эффективность трансформации повышается, в зависимости от размеров плазмид, в 106 – 109 раз.
Процесс инфицирования клеток с помощью чужеродных ДНК, приводящий к образованию зрелого фагового потомства, назван
трансфекцией.
Однако эффективность проникновения экзогенной ДНК в клетку довольно низка. Поэтому среди бактерий, подвергшихся трансформации, только небольшая часть оказывается трансформированной (обычно одна из тысячи). Кроме того, часть этих бактерий может содержать исходную, не трансформированную плазмиду. Отделение клеток, содержащих рекомбинантную ДНК, от общей массы осуществляется в процессе клонирования. Для клонирования трансформированную бактериальную суспензию низкой концентрации выливают на твердую питательную среду, например на агар или чаще на нитроцеллюлозные фильтры, помещенные на чашку Петри с питательной средой, из расчета 5 - 10 бактерий на 1 см2 поверхности. Бактериальная клетка на поверхности фильтра начинает делиться с образованием в итоге маленькой колонии, похожей на шляпку гриба. Эта колония называется клоном,причем из каждой клетки образуется свой клон, все клетки которого имеют свойства бактерии-родоначальника.
Отбор бактерий-трансформантов можно продемонстрировать, используя рассмотренную ранее плазмиду pBR322, содержащую два гена устойчивости к тетрациклину и ампициллину. Для отбора этих бактерий в питательную среду добавляют антибиотик - или ампициллин, или тетрациклин в зависимости от того, какой из генов (blа или tet) остался интактным (неповрежденным) после введения чужеродной ДНК. На такой среде клоны образуют клетки только с плазмидами (рекомбинантными и нерекомбинантными), а все остальные погибают. Для отделения рекомбинантных бактерий от исходных используют следующую технологию. К фильтру с исходными колониями прижимают свежий нитроцеллюлозный фильтр (фильтр-реплика), который затем переносят на чашку Петри с аналогичной питательной средой, но, содержащей антибиотик, ген устойчивости к которому был разрушен при создании рекомбинантов. На этих фильтрах дают клоны только те бактерии, которые содержат исходную плазмиду, а рекомбинантные бактерии их не образуют. Анализируя расположение клонов на исходном фильтре, и фильтре-реплике, выделяют колонии, содержащие трансформированные клетки.
При поиске рекомбинантных клонов успешно применяют метод радиоавтографии, основанный на способности двух любых одноцепочечных комплиментарных фрагментов ДНК спариваться (гибридизоваться) между собой. Если один фрагмент (ДНК-зонд, гибридизационный зонд) содержит радиоактивную метку (обычно изотоп фосфора 32 или иода 125), то радиоактивной будет и гибридизованная молекула ДНК или ее фрагмент.