Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 476

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕУчебно-методическое пособие знакомит студентов с основными понятиями о теории вероятностей, случайных процессах, статистическом оценивании и проверке гипотез, статистических методах обработки экспериментальных данных, математических методах, принятых в биологических исследованиях.Пособие состоит из четырех разделов: Введение в теорию вероятностей. Основные понятия и термины статистики. Статистические методы обработки экспериментальных данных. Компьютерная обработка данных анализа в специализированной программе EasyStatistics. Введение в теорию вероятностей дает представление о случайных событиях, вероятности и ее свойствах, случайных величинах и основных теоретических распределениях случайных величин.При изучении второго раздела разбираются понятия о совокупности и выборке, классификации признаков, дается представление о схемах научного эксперимента и научных гипотезах, достоверности и надежности результатов.Третий раздел знакомит со статистическими методами описания групп, способами их сравнения в зависимости от характера распределения исходных данных. Большое внимание уделено корреляционно-регрессионному анализу, лежащему в основе многомерных методов анализа. Разбираются широко распространенные в биологических исследованиях методы оценки динамики, цикличности и классификации. При описании каждого метода описываются условия, необходимые для проведения статистической обработки, и возможные трудности в интерпретации полученных показателей. Четвертый раздел посвящен практическому применению методов статистической обработки данных с помощью специализированной программы «Статистическая обработка медико-биологических данных» (EasyStatistics). Данная программа разработана автором пособия (Роспатент №2003612171) и предназначена для статистической обработки данных биологических и медицинских исследований и, в первую очередь, нацелена на выполнение курсовых и дипломных работ студентами. В то же время это не замена уже существующим мощным статистическим пакетам, таким как Statistica, а скорее дополнение, помогающее оценить возможности манипулирования данными и принципы работы с основными статистическими методами. Каждый раздел содержит список вопросов и заданий для самопроверки.Пособие также содержит список учебно-методических материалов, рекомендуемых для самостоятельной работы студентов.РАЗДЕЛ I. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙЗакономерности, которым подчиняются случайные события, изучаются в разделах математики, которые называются теорией вероятностей и математической статистикой.Понятие о случайном событииОпыт, эксперимент, на­блюдение явления называются испытанием. Испытаниями, напри­мер, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенными на каждую грань числом очков — от одного до шести).Результат, исход испытания называется событием. Для обозначения событий используются большие буквы ла­тинского алфавита: А, В, С и т. д.Два события называются совместимыми, если появление одного из них не исключает появление другого в одном и том же испытании.Испытание: однократное бросание игральной кости. Событие А — появление четырех очков. Событие В— появле­ние четного числа очков. События Аи В совместимые.Два события называются несовместимы­ми, если появление одного из них исключает появление другого в одном и том же испытании.Испытание: однократное бросание монеты. Собы­тие А — выпадение герба, событие В — выпадение цифры. Эти события несовместимы, так как появление одного из них исключает появление другого.Несовместимость более чем двух событий означает их попарную несовместимостьИспытание: однократное бросание игральной кости. Пусть события А1, А2, А3, А4, А5, А6 соответственно выпа­дение одного очка, двух, трех и т. д. Эти события являются несов­местимыми..Два события А и В называются проти­воположными, если в данном испытании они несовместимы и одно из них обязательно происходит.Событие, противоположное событию А, обозначают через А.Испытание: бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события противоположны, так как исходами бросания могут быть лишь они, и появление одного из них исключает появление другого, т. е. А = В или А = В.Событие называется достоверным, если в данном испытании оно является единственно возможным его ис­ходом, и невозможным, если в данном испытании оно заведомо не может произойти.Испытание: извлечение шара из урны, в которой все шары белые. Событие А — вынут белый шар — достоверное событие; событие В — вынут черный шар — невозможное событие.Достоверное и невозможное события в данном испытании являются противоположными.Событие А называется случайным, если оно объективно может наступить или не наступить в данном испы­тании.Выпадение шести очков при броса­нии игральной кости — случайное событие. Оно может наступить, но может и не наступить в данном испытании.Прорастание девяноста восьми зерен пшеницы из ста — случайное событие. Это событие может наступить, но, может быть, прорастет зерен больше или меньше.Классическое определение вероятностиВсякое испыта­ние влечет за собой некоторую совокупность исходов — резуль­татов испытания, т. е. событий. Во многих случаях возможно пере­числить все события, которые могут быть исходами данного испы­тания.Говорят, что совокупность событий обра­зует полную группу событий для данного испытания, если его ре­зультатом обязательно становится хотя бы одно из них.События Ul, U2, ..., Un , образующие полную группу попарно несовместимых и равновозможных собы­тий, будем называть элементарными событиями.Вернемся к опыту с подбрасыванием игральной кости. Пусть Ui — событие, состоящее в том, что кость выпала гранью с цифрой i. Как уже отмечалось, события U1, U2, …, U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметрич­ной, то события U1, U2, …, U6 являются и равновозможными, т. е. элементарными.Событие А называется благоприят­ствующим событию В, если наступление события А влечет за собой наступление события В.Пусть при бросании игральной кости события U2, U4 и U6 — появление соответственно двух, четырех и шести очков и А — событие, состоящее в появлении четного очка; собы­тия U2, U4 и U6 благоприятствуют событию А.Классическое определение вероятностиВероятностью Р (А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А — выпадение герба и событие В — выпадение цифры — образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно со­бытие — само А, т. е. здесь m = 1. Поэтому Р(А) = 0,5.Найти вероятность того, что при бросании иг­ральной кости выпадет число очков, делящееся на 2 (событие А). Число элементарных событий здесь 6. Число благоприятст­вующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому .Из приведенного классического определения вероятности вы­текают следующие ее свойства.1. Вероятность достоверного события равна единице.Действительно, достоверному событию должны благоприят­ствовать все n элементарных событий, т. е. m = n и, следовательно, P(A)=1.2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприят­ствовать ни одно из элементарных событий, т. е. m = 0, откуда P(A)=0.3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n , значит, 0 <= Р (А)<= 1.Относительная частота.Статистическое определение ве­роятности.Классическое определение вероятности не являет­ся пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможны. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможно.В таких случаях используется так называемое статистическое определение вероятности.Пусть произведено n испытаний, при этом некоторое событие А наступило m раз. Число m называется абсолютной часто­той (или просто частотой) события А, а отношение называется относительной частотой события А.При транспортировке из 10 000 арбузов испор­тилось 26. Здесь m= 26 — абсолютная частота испорченных ар­бузов, а P*(A)=0,0026 относительная.Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число n сравнительно мало, относительная частота Р*(A) принимает зна­чения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n — числа испытаний в сериях — относитель­ная частота Р*(А) приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500;0,497; 0,494; 0,484. Эти частоты группируются около числа 0,5Статистическое определение вероят­ностиВероятностью события А в данном испытании называется число Р (А), около которого группируются значения относительной частоты при больших n.По официальным данным шведской статистики, относительные частоты рождения девочек по месяцам 2007 г. харак­теризуются следующими числами (расположены в порядке сле­дования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473. Эти частоты группируются около числа 0,482.Таким образом, относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточно велико. Геометрическая вероятностьДо этого мы рассматривали возможные эксперименты, в которых реализуется конечное множество событий. Однако существует большое количество задач, для которых такое предположение не является справедливым. При решении таких задач предполагается, что множество реализуемых событий может быть представлено в виде некоторой геометрической фигуры, а конкретное событие соответствует точке заданной части этой фигуры. В качестве события A можно рассмотреть любую подобласть области Ω. Например, фигуру внутри исходной фигуры на плоскости или отрезок, лежащий внутри исходного отрезка на прямой.Заметим, что элементарным событием на таком множестве может быть только точка. В самом деле, если множество содержит более одной точки, его можно разбить на два непустых подмножества. Следовательно, такое множество уже неэлементарно.Теперь определим вероятность. Тут тоже все легко: вероятность «попадания» в каждую конкретную точку равна нулю. Иначе получим бесконечную сумму одинаковых положительных слагаемых (ведь элементарные события равновероятны), которые в сумме больше P(Ω) = 1.Итак, элементарные события для бесконечных областей Ω — это отдельные точки, причем вероятность «попадания» в любую из них равна нулю. Но как искать вероятность неэлементарного события, которое, подобно Ω, содержит бесконечное множество точек? Вот мы и пришли к определению геометрической вероятности.Геометрическая вероятность события A, являющегося подмножеством множества Ω точек на прямой или плоскости — это отношение площади фигуры A к площади всего множества Ω.Мишень имеет форму окружности. Какова вероятность попадания в ее правую половину, если попадание в любую точку мишени равновероятно? При этом промахи мимо мишени исключены. Взглянем на картинку: нас устроит любая точка из правого полукруга. Очевидно, площадь S(A) этого полукруга составляет ровно половину площади всего круга, поэтому имеем P=0,5Студент и студентка договариваются о встрече на заданном промежутке времени Т. Тот, кто приходит первым ожидает другого в течение времени tВ качестве множества элементарных событий рассмотри квадрат, состоящий из точек (x,y), 0<=x<=T, 0<=y<=T, где x и у время прихода его и ее.Благоприятсвующие события образуют точки, для которых |x-y|<t, т.е. точки квадрата между прямыми y=x-t, y=x+t. Площадь получающейся фигуры равна T2-(T-t)2, а площадь всего квадрата – Т2. Отсуда искомая вероятность Свойства вероятностейСложение вероятностей несовместимых событийСуммой событий А и В называется собы­тие С = А + В, состоящее в наступлении по крайней мере одного из событий А или В.Стрельба двух стрелков (каждый де­лает по одному выстрелу). Событие А — попадание в мишень пер­вым стрелком, событие В — попадание в мишень вторым стрелком. Суммой событий А и В будет событие С = А + В, состоящее в попадании в мишень по крайней мере одним стрелком.Произведением событий А и В назы­вается событие С = АВ, состоящее в том, что в результате испыта­ния произошло и событие А, и событие В.Аналогично произведением конечного числа событий A1 А2, …, Ak называется событие А = А1 * A2 * ... * Ak, состоящее в том, что в результате испытания произошли все указанные события.В условиях предыдущего примера произведением событий А и В будет событие С = АВ, состоящее в попадании в мишень двух стрелков.Из определения непосредственно следует, что АВ = ВА.Вероятность суммы двух несовместимых событий А и В равна сумме вероятностей этих событий:Р (А + В) = Р (А) + Р (В). Следствие. Сумма вероятностей противоположных собы­тий А и А равна единице:Р(А) + Р(А

Коэффициент сопряженности Чупрова. Дальнейшим обоб-щением четырехпольных таблиц являются многопольные таблицы, для которых сопряженность наиболее часто оценивается по формуле, предложенной русским статистиком А. А. Чупровым. Прежде чем приводить ее рассмотрим несколько реальных ситуаций, когда такая оценка может потребоваться. Известно, например, что окраска тюльпанов связана с наличием определенных пигментов. Может представлять интерес вопрос о том, с какими именно пигментами преимущественно связана та или иная окраска цветка. Или другой пример. Окружающая гнездо полярной крачки обстановка может представлять собой зеленые растения, растения и гальку, пестрые камешки и т. д. При этом можно наблюдать самые разные по качеству гнезда: от его отсутствия до очень хорошо сделанного. В этом случае желательно знать, связано ли качество гнезда с какой-то одной или несколькими характеристиками окружающей среды. Общим для этих и других подобных задач является то, что в распоряжении экспериментатора оказываются данные о некотором множестве объектов, обладающих двумя признаками, причем каждый из признаков может иметь несколько градаций. В этом случае , где m - число разновидностей явления Х; k - число разновидностей явления Y, n – общее число объектов (m*k). Независимо то того, что каждый из описательных признаков, несмотря на разницу в численности его разновидностей, можно свести к альтернативному - только с двумя разновидностями, довольно часто в практике возникает необходимость работать с описательными признаками более двух разновидностей. В таких случаях необходимо при вычислении коэффициента корреляции составлять так называемую корреляционную таблицу (где X1,X2,...Xn - обозначают разновидность одного признака, а Y1, Y2... Yn - разновидности другого).При наличии такой схемы коэффициент корреляции находят по формуле: , где - коэффициент связи, m- число разновидностей явления Х; k - число разновидностей явления Y.Данный метод пригоден также и для экспрессной оценки связи между количественными (например возраст) и качествен-ными (например брак) параметрами.На практике (особенно в зоологии и ботанике) довольно часто встречаются другие меры измерения связи.

х3(потребности) имеет наибольшую фактор­ную нагрузку (1,12), а х2 (способности) — наименьшую (0,36).

Следовательно, наиболее значимой причиной, влияющей на все остальные психологические переменные, в нашем случае явля­ются потребности, а наименее значимой — способности. Из кор­реляционной матрицы видно, что связи переменной х3со всеми остальными являются наиболее сильными (от 0,40 до 0,75), а кор­реляции переменной х2самыми слабыми (от 0,16 до 0,40).

Чаще всего в итоге факторного анализа определяется не один, а несколько факторов, по-разному объясняющих матрицу интер­корреляций переменных. В таком случае факторы делят на ге­неральные, общие и единичные.


Генеральными называются фак­торы, все факторные нагрузки которых значительно отличают­ся от нуля (нуль нагрузки свидетельствует о том, что данная пе­ременная никак не связана с остальными и не оказывает на них никакого влияния в жизни).

Общие — это факторы, у которых часть факторных нагрузок отлична от нуля.

Единичные — это факторы, в которых существенно отличается от нуля только одна из нагрузок.


Вопросы для самопроверки:


  1. Объясните значения фраз «высокая положительная корреляция» и «низкая отрицательная корреляция». Приведите примеры и графики, иллюстрирующие эти понятия.

  2. Сформулируйте в содержательных понятиях задачу из области специализации, при решении которой необходимо вычислять: коэффициент корреляции Пирсона, коэффициент корреляции Спирмена, коэффициент взаимной сопряженности.

  3. Перечислите причины появления ложной корреляции.

  4. Объясните смысл коэффициента ранговой корреляции?

  5. Может ли коэффициент корреляции быть равным нулю, когда между измеряемыми признаками наблюдается функциональная зависимость?

  6. Приведите примеры, когда нулевая корреляция предполагает независимость и когда нулевая корреляция такой зависимости не предполагает?

Регрессионный анализ
Довольно часто в практике исследовательской работы имеет место ситуация, когда важнейшие переменные, описывающие некоторый процесс, известны заранее, но модель процесса еще не известна. В этом случае возможны разные подходы. Одним из них является построение эмпирических моделей.

Построение эмпирических моделей предполагает проведение экспериментов или наблюдений для сбора опытных данных, выбор одной определенной модели из некоторого множества возможных, вычисление коэффициентов модели («подгонку») и оценку полученных результатов.

Число цветков при разном количестве неорганического брома в почве.



Кол-во брома (мкг/см3)

2

4

6

8

10

12

14

Среднее число цветков

3,6

2,9

3,2

1,8

2,3

1,7

0,8



Метод наименьших квадратов

Метод наименьших квадратов, разработанный знаменитыми математиками К. Гауссом и А. Лежандром, берет свое начало от задач геодезии и астрономии. Рассмотрим его существо на примере линейной модели. Итак, пусть для представления полученных данных мы выбрали линейную модель y

*=a+bx, где х – независимая переменная, т. е., переменная, которую экспериментатор может менять по своему усмотрению; y* - зависимая переменная или отклик; a и b – коэффициенты (параметры). Из данных, приведенных в примере, видно, что именно такой моделью (уравнением прямой линии) может быть описана зависимость.

С другой стороны, видно что реально наблюдаемые значения отклика yi несколько отличаются от откликов yi*, соответствующих уравнению модели. И такое положение будет всегда, даже в тех случаях, когда зависимая и независимая переменные будут связаны строгой функциональной зависимостью. В этом случае отклонения эмпирических значений от теоретических связаны с погрешностями измерений, которые всегда имеют место.

Итак, каждому значению независимой переменной в общем случае соответствует ошибка: i=yi-yi*.

Естественно, что в зависимости от того, как будет проведена прямая, аппроксимирующая набор экспериментальных данных, величины i будут различны. Именно, для того, чтобы избежать субъективности при построении эмпирической модели, и был разработан метод наименьших квадратов, позволяющий однозначно определить параметры выбранной модели. В основе этого метода лежит критерий минимизации суммы квадратов ошибок, т. е. требование, чтобы была минимальной.

Покажем, как используется метод наименьших квадратов на примере оценки параметров для уравнения y*=a+bx.

В общем случае необходимо решить систему уравнений:

, из которых находятся коэффициенты a и b.

Подставляя данные из примера, получаем:

16,3=7a+56b

107=56a+560b

Откуда a=4, b=-0,209.

В таблице приведено сравнение между реальными и теоретическими данными, а также величины ошибок.

Y

3,6

2,9

3,2

1,8

2,3

1,7

0,8

y*

3,582

3,164

2,746

2,328

1,91

1,492

1,074

i

0,018

-0,264

0,454

-0,528

0,39

0,208

-0,274

Сумма i

0,825






















Выбор формы функциональной зависимости
Пусть имеется ряд данных, представляющих одну зависимую и одну независмую переменную, и требуется определить функциональную связь между ними. Универсального способа решения этой задачи не существует. Иногда анализ графического изображения имеющихся данных, а также понимание механизма исследуемого процесса помогают выбрать вид аналитической зависимости. Особенно просто оценить вид функциональной зависимости, если экспериментальные данные укладываются или группируются относительно некоторой прямой.

Значительное число зависимостей, встречающихся в практике научных исследований в самых разных областях знаний, может быть описано следующими уравнениями:

y=a+bx,

y=a+bx+cx2,

y=abx,

y=axb,

y=x/(a+bx).
Применение парного линейного уравнения регрессии
Прежде чем обсуждать вопросы использования уравнений парной регрессии, вспомним, что парный корреляционный анализ не дает чистых мер влияния только одного изучаемого фактора. Если факторы взаимосвязаны, то парная связь измеряет влияние данного фактора и часть влияния прочих факторов, связанных с ним.

Уравнение регрессии применимо для прогнозирования возможных ожидаемых значений результативного признака. При этом следует учесть, что перенос закономерности связи, измеренной в варьирующей совокупности, в статике на динамику, не является, строго говоря, корректным и требует условий допустимости такого переноса (экстраполяции), что выходит за рамки статистики и может быть сделано только специалистом, хорошо знающим объект (систему) и возможности его развития в будущем).

Ограничением прогнозирования на основе регрессионного уравнения, тем более парного, служит условие стабильности или по крайней мере малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится внешняя среда протекающего процесса, прежнее уравнение результативного признака на факторный потеряет свое значение. В сильно засушливый год доза удобрения может не оказать влияния на урожайность, так как последнюю лимитирует пониженная влагообеспеченность (закон Либиха).

Корреляционно-регрессионные модели (КРМ)

и их применение в анализе и прогнозе.

Корреляционно-регрессионной моделью системы взаимосвязанных признаков является такое уравнение регрессии, которое включает основные факторы, влияющие на результативный признак, обладает высоким (не ниже 0.5) коэффициентом детерминации и коэффициентами регрессии.

Приведенное определение КРМ включает достаточно строгие условия: далеко не всякое уравнение регрессии можно считать моделью.

Теория и практика выработали ряд рекомендация для построения корреляционно-регрессионной модели:

  1. Признаки-факторы должны находиться в причинной связи с результативным признаком (следствием).

  2. Признаки-факторы не должны быть составными частями результативного признака или его функциями.

  3. Признаки-факторы не должны дублировать друг друга, т.е. быть коллинеарными (с коэффициентом корреляции более 0.8).

  4. Не следует включать в модель факторы разных уровней иерархии, т.е. фактор ближнего порядка и его субфакторы.

  5. Желательно, чтобы между результативным признаком и факторами соблюдалось единство единиц совокупности, к которой они отнесены.

  6. Математическая форма уравнения регрессии должна соответствовать логике связи факторов с результатом в реальном объекте. Например, такие факторы как дозы различных удобрений, уровень плодородия, число прополок и т.п. создают прибавки величины урожайности мало зависящие друг от друга; урожайность может существовать и без любого из этих факторов. Такому характеру связи соответствует аддитивное уравнение регрессии: y=a+b1x1+b2x2+....bnxn

  7. Принцип простоты; предпочтительнее модели с меньшим числом факторов при том же коэффициенте детерминации или даже при существенно меньшем коэффициенте.

  8. Следует обращать внимание, что полученное уравнение регрессии не полностью описывает эмпирические данные и, в общем случае, Дисперсия (общая) = Дисперсия (объяснена уравнением регрессии) + Дисперсия (остаточная).

Интерпретировать корреляционные показатели строго следует лишь в терминах вариации (различий в пространстве) отклонений от средней величины. Если же задача исследования состоит в измерении связи не между вариацией двух признаков в совокупности, а между измерениями признаков объекта во времени, то метод корреляциооно-регрессионного анализа требует значительного изменения.

Из вышеприведенного определения об интерпретации показателей корреляции следует, что нельзя трактовать корреляцию признаков как связь их уровней. Это ясно хотя бы из такого примера: Если бы все студенты, которые ходят на лекции, учились бы только на пятерки, то вариация этого признака равнялась бы нулю, а следовательно успеваемость абсолютно не могла бы влиять на посещаемость. Параметры корреляции между успеваемостью и посещаемостью всегда будут равняться нулю. Но ведь и в этом случае уровень знаний зависел бы от числа лекций - он был бы тем выше, чем больше лекций.