Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 479

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕУчебно-методическое пособие знакомит студентов с основными понятиями о теории вероятностей, случайных процессах, статистическом оценивании и проверке гипотез, статистических методах обработки экспериментальных данных, математических методах, принятых в биологических исследованиях.Пособие состоит из четырех разделов: Введение в теорию вероятностей. Основные понятия и термины статистики. Статистические методы обработки экспериментальных данных. Компьютерная обработка данных анализа в специализированной программе EasyStatistics. Введение в теорию вероятностей дает представление о случайных событиях, вероятности и ее свойствах, случайных величинах и основных теоретических распределениях случайных величин.При изучении второго раздела разбираются понятия о совокупности и выборке, классификации признаков, дается представление о схемах научного эксперимента и научных гипотезах, достоверности и надежности результатов.Третий раздел знакомит со статистическими методами описания групп, способами их сравнения в зависимости от характера распределения исходных данных. Большое внимание уделено корреляционно-регрессионному анализу, лежащему в основе многомерных методов анализа. Разбираются широко распространенные в биологических исследованиях методы оценки динамики, цикличности и классификации. При описании каждого метода описываются условия, необходимые для проведения статистической обработки, и возможные трудности в интерпретации полученных показателей. Четвертый раздел посвящен практическому применению методов статистической обработки данных с помощью специализированной программы «Статистическая обработка медико-биологических данных» (EasyStatistics). Данная программа разработана автором пособия (Роспатент №2003612171) и предназначена для статистической обработки данных биологических и медицинских исследований и, в первую очередь, нацелена на выполнение курсовых и дипломных работ студентами. В то же время это не замена уже существующим мощным статистическим пакетам, таким как Statistica, а скорее дополнение, помогающее оценить возможности манипулирования данными и принципы работы с основными статистическими методами. Каждый раздел содержит список вопросов и заданий для самопроверки.Пособие также содержит список учебно-методических материалов, рекомендуемых для самостоятельной работы студентов.РАЗДЕЛ I. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙЗакономерности, которым подчиняются случайные события, изучаются в разделах математики, которые называются теорией вероятностей и математической статистикой.Понятие о случайном событииОпыт, эксперимент, на­блюдение явления называются испытанием. Испытаниями, напри­мер, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенными на каждую грань числом очков — от одного до шести).Результат, исход испытания называется событием. Для обозначения событий используются большие буквы ла­тинского алфавита: А, В, С и т. д.Два события называются совместимыми, если появление одного из них не исключает появление другого в одном и том же испытании.Испытание: однократное бросание игральной кости. Событие А — появление четырех очков. Событие В— появле­ние четного числа очков. События Аи В совместимые.Два события называются несовместимы­ми, если появление одного из них исключает появление другого в одном и том же испытании.Испытание: однократное бросание монеты. Собы­тие А — выпадение герба, событие В — выпадение цифры. Эти события несовместимы, так как появление одного из них исключает появление другого.Несовместимость более чем двух событий означает их попарную несовместимостьИспытание: однократное бросание игральной кости. Пусть события А1, А2, А3, А4, А5, А6 соответственно выпа­дение одного очка, двух, трех и т. д. Эти события являются несов­местимыми..Два события А и В называются проти­воположными, если в данном испытании они несовместимы и одно из них обязательно происходит.Событие, противоположное событию А, обозначают через А.Испытание: бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события противоположны, так как исходами бросания могут быть лишь они, и появление одного из них исключает появление другого, т. е. А = В или А = В.Событие называется достоверным, если в данном испытании оно является единственно возможным его ис­ходом, и невозможным, если в данном испытании оно заведомо не может произойти.Испытание: извлечение шара из урны, в которой все шары белые. Событие А — вынут белый шар — достоверное событие; событие В — вынут черный шар — невозможное событие.Достоверное и невозможное события в данном испытании являются противоположными.Событие А называется случайным, если оно объективно может наступить или не наступить в данном испы­тании.Выпадение шести очков при броса­нии игральной кости — случайное событие. Оно может наступить, но может и не наступить в данном испытании.Прорастание девяноста восьми зерен пшеницы из ста — случайное событие. Это событие может наступить, но, может быть, прорастет зерен больше или меньше.Классическое определение вероятностиВсякое испыта­ние влечет за собой некоторую совокупность исходов — резуль­татов испытания, т. е. событий. Во многих случаях возможно пере­числить все события, которые могут быть исходами данного испы­тания.Говорят, что совокупность событий обра­зует полную группу событий для данного испытания, если его ре­зультатом обязательно становится хотя бы одно из них.События Ul, U2, ..., Un , образующие полную группу попарно несовместимых и равновозможных собы­тий, будем называть элементарными событиями.Вернемся к опыту с подбрасыванием игральной кости. Пусть Ui — событие, состоящее в том, что кость выпала гранью с цифрой i. Как уже отмечалось, события U1, U2, …, U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметрич­ной, то события U1, U2, …, U6 являются и равновозможными, т. е. элементарными.Событие А называется благоприят­ствующим событию В, если наступление события А влечет за собой наступление события В.Пусть при бросании игральной кости события U2, U4 и U6 — появление соответственно двух, четырех и шести очков и А — событие, состоящее в появлении четного очка; собы­тия U2, U4 и U6 благоприятствуют событию А.Классическое определение вероятностиВероятностью Р (А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А — выпадение герба и событие В — выпадение цифры — образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно со­бытие — само А, т. е. здесь m = 1. Поэтому Р(А) = 0,5.Найти вероятность того, что при бросании иг­ральной кости выпадет число очков, делящееся на 2 (событие А). Число элементарных событий здесь 6. Число благоприятст­вующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому .Из приведенного классического определения вероятности вы­текают следующие ее свойства.1. Вероятность достоверного события равна единице.Действительно, достоверному событию должны благоприят­ствовать все n элементарных событий, т. е. m = n и, следовательно, P(A)=1.2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприят­ствовать ни одно из элементарных событий, т. е. m = 0, откуда P(A)=0.3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n , значит, 0 <= Р (А)<= 1.Относительная частота.Статистическое определение ве­роятности.Классическое определение вероятности не являет­ся пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможны. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможно.В таких случаях используется так называемое статистическое определение вероятности.Пусть произведено n испытаний, при этом некоторое событие А наступило m раз. Число m называется абсолютной часто­той (или просто частотой) события А, а отношение называется относительной частотой события А.При транспортировке из 10 000 арбузов испор­тилось 26. Здесь m= 26 — абсолютная частота испорченных ар­бузов, а P*(A)=0,0026 относительная.Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число n сравнительно мало, относительная частота Р*(A) принимает зна­чения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n — числа испытаний в сериях — относитель­ная частота Р*(А) приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500;0,497; 0,494; 0,484. Эти частоты группируются около числа 0,5Статистическое определение вероят­ностиВероятностью события А в данном испытании называется число Р (А), около которого группируются значения относительной частоты при больших n.По официальным данным шведской статистики, относительные частоты рождения девочек по месяцам 2007 г. харак­теризуются следующими числами (расположены в порядке сле­дования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473. Эти частоты группируются около числа 0,482.Таким образом, относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточно велико. Геометрическая вероятностьДо этого мы рассматривали возможные эксперименты, в которых реализуется конечное множество событий. Однако существует большое количество задач, для которых такое предположение не является справедливым. При решении таких задач предполагается, что множество реализуемых событий может быть представлено в виде некоторой геометрической фигуры, а конкретное событие соответствует точке заданной части этой фигуры. В качестве события A можно рассмотреть любую подобласть области Ω. Например, фигуру внутри исходной фигуры на плоскости или отрезок, лежащий внутри исходного отрезка на прямой.Заметим, что элементарным событием на таком множестве может быть только точка. В самом деле, если множество содержит более одной точки, его можно разбить на два непустых подмножества. Следовательно, такое множество уже неэлементарно.Теперь определим вероятность. Тут тоже все легко: вероятность «попадания» в каждую конкретную точку равна нулю. Иначе получим бесконечную сумму одинаковых положительных слагаемых (ведь элементарные события равновероятны), которые в сумме больше P(Ω) = 1.Итак, элементарные события для бесконечных областей Ω — это отдельные точки, причем вероятность «попадания» в любую из них равна нулю. Но как искать вероятность неэлементарного события, которое, подобно Ω, содержит бесконечное множество точек? Вот мы и пришли к определению геометрической вероятности.Геометрическая вероятность события A, являющегося подмножеством множества Ω точек на прямой или плоскости — это отношение площади фигуры A к площади всего множества Ω.Мишень имеет форму окружности. Какова вероятность попадания в ее правую половину, если попадание в любую точку мишени равновероятно? При этом промахи мимо мишени исключены. Взглянем на картинку: нас устроит любая точка из правого полукруга. Очевидно, площадь S(A) этого полукруга составляет ровно половину площади всего круга, поэтому имеем P=0,5Студент и студентка договариваются о встрече на заданном промежутке времени Т. Тот, кто приходит первым ожидает другого в течение времени tВ качестве множества элементарных событий рассмотри квадрат, состоящий из точек (x,y), 0<=x<=T, 0<=y<=T, где x и у время прихода его и ее.Благоприятсвующие события образуют точки, для которых |x-y|<t, т.е. точки квадрата между прямыми y=x-t, y=x+t. Площадь получающейся фигуры равна T2-(T-t)2, а площадь всего квадрата – Т2. Отсуда искомая вероятность Свойства вероятностейСложение вероятностей несовместимых событийСуммой событий А и В называется собы­тие С = А + В, состоящее в наступлении по крайней мере одного из событий А или В.Стрельба двух стрелков (каждый де­лает по одному выстрелу). Событие А — попадание в мишень пер­вым стрелком, событие В — попадание в мишень вторым стрелком. Суммой событий А и В будет событие С = А + В, состоящее в попадании в мишень по крайней мере одним стрелком.Произведением событий А и В назы­вается событие С = АВ, состоящее в том, что в результате испыта­ния произошло и событие А, и событие В.Аналогично произведением конечного числа событий A1 А2, …, Ak называется событие А = А1 * A2 * ... * Ak, состоящее в том, что в результате испытания произошли все указанные события.В условиях предыдущего примера произведением событий А и В будет событие С = АВ, состоящее в попадании в мишень двух стрелков.Из определения непосредственно следует, что АВ = ВА.Вероятность суммы двух несовместимых событий А и В равна сумме вероятностей этих событий:Р (А + В) = Р (А) + Р (В). Следствие. Сумма вероятностей противоположных собы­тий А и А равна единице:Р(А) + Р(А

Коэффициент сопряженности Чупрова. Дальнейшим обоб-щением четырехпольных таблиц являются многопольные таблицы, для которых сопряженность наиболее часто оценивается по формуле, предложенной русским статистиком А. А. Чупровым. Прежде чем приводить ее рассмотрим несколько реальных ситуаций, когда такая оценка может потребоваться. Известно, например, что окраска тюльпанов связана с наличием определенных пигментов. Может представлять интерес вопрос о том, с какими именно пигментами преимущественно связана та или иная окраска цветка. Или другой пример. Окружающая гнездо полярной крачки обстановка может представлять собой зеленые растения, растения и гальку, пестрые камешки и т. д. При этом можно наблюдать самые разные по качеству гнезда: от его отсутствия до очень хорошо сделанного. В этом случае желательно знать, связано ли качество гнезда с какой-то одной или несколькими характеристиками окружающей среды. Общим для этих и других подобных задач является то, что в распоряжении экспериментатора оказываются данные о некотором множестве объектов, обладающих двумя признаками, причем каждый из признаков может иметь несколько градаций. В этом случае , где m - число разновидностей явления Х; k - число разновидностей явления Y, n – общее число объектов (m*k). Независимо то того, что каждый из описательных признаков, несмотря на разницу в численности его разновидностей, можно свести к альтернативному - только с двумя разновидностями, довольно часто в практике возникает необходимость работать с описательными признаками более двух разновидностей. В таких случаях необходимо при вычислении коэффициента корреляции составлять так называемую корреляционную таблицу (где X1,X2,...Xn - обозначают разновидность одного признака, а Y1, Y2... Yn - разновидности другого).При наличии такой схемы коэффициент корреляции находят по формуле: , где - коэффициент связи, m- число разновидностей явления Х; k - число разновидностей явления Y.Данный метод пригоден также и для экспрессной оценки связи между количественными (например возраст) и качествен-ными (например брак) параметрами.На практике (особенно в зоологии и ботанике) довольно часто встречаются другие меры измерения связи.



Выбор между параметрическими и непараметрическими

тестами: легкая ситуация.

Выбор между параметрическими и непараметрическими тестами иногда достаточно прост: Вы должны четко выбрать параметрический тест, если Вы уверены, что Ваши данные были получены как выборка из популяции, которая соответствует нормальному распределению. Вы должны определенно выбирать непараметрический тест в следующих ситуациях:

  • Результат является ранговым значением или оценочным значением и популяция явно не имеет нормального распределения. Примеры могут включать ранжирование студентов, шкалу Апгара, которая измеряет здоровье новорожденных (измеряется на шкале от 0 до 10 и все значения являются целыми), визуальную аналоговую шкалу боли (которая измеряется на непрерывной шкале где 0 - это отсутствие боли и 10 - это непереносимая боль), и так называемая звездочная шкала, которая используется критиками при оценке фильмов и ресторанов (*неплохо, ***** прекрасно).

  • Некоторые значения очень резко отличаются от остальных, то есть слишком высокие или слишком низкие для измерений. Даже если популяция является Гауссовой невозможно анализировать такие данные параметрическим тестом, поскольку Вы не знаете всех значений. Использование с этими данными непараметрического теста достаточно простое: Вы присваиваете тем значениям, которые являются слишком низкими для того, чтобы их можно было измерить произвольное, но очень небольшое значение, и для очень больших значений Вы присваиваете произвольное, но очень большое значение, а затем выполняете непараметрический тест. Поскольку непараметрические тесты базируются только на информации о ранговом положении значений, тот факт, что Вы не знаете точных значений этих показателей уже не будет Вам сильно мешать.

  • Данные, которые достаточно точно измерены, но Вы уверены, что популяция не распределяется в соответствии с нормальным законом. Если данные не получены из Гауссовского распределения, тогда Вы должны вначале подумать нельзя ли трансформировать значение так, чтобы оно превратилось в Гауссовское. Например, Вы можете взять логарифм или величину обратную всем значениям. Часто имеются биологические или химические причины (также как и статистические) для того, чтобы выполнить ту или иную трансформацию.



Выбор между параметрическими и непараметрическими

тестами: сложные случаи.

Не всегда легко определить является ли выборка из Гауссовой популяции. Обратите внимание на следующие положения:

  • Если Вы имеете большое количество наблюдений (100 или более) Вы можете посмотреть на распределение данных и совершенно четко будет видно насколько оно соответствует знаменитой колоколообразной кривой нормального распределения. Формальный статистический тест (тест Колмогорова-Смирнова) может использоваться для того, чтобы проанализировать вопрос насколько распределение данных отличается от Гауссова распределения. Когда у Вас имеется только небольшое количество наблюдений, очень сложно принять решение о том, следуют ли данные Гауссовому распределению и формальные тесты также имеют очень маленькую статистическую мощность для того, чтобы найти различие между Гауссовым и не Гауссовым распределением.

  • Вы должны посмотреть на предыдущие данные. Помните, что то что Вас интересует - это распределение популяции в целом, а не распределение Вашей выборки. Принимая решение о том, является ли Ваше распределение нормальным, посмотрите на все имеющиеся данные, а не только на данные нынешнего эксперимента.

  • Обратите внимание на источники разброса, когда разброс идет как результат суммы различных источников и ни один из источников не является основным источником разброса, у Вас скорее всего будет распределение Гаусса. Когда люди сомневаются, то некоторые выбирают параметрические тесты (поскольку они не уверены, что нарушается допущение о следовании нормальному закону распределения), а другие выбирают непараметрические тесты (поскольку они не уверены, что выполняются допущения о соответствии распределения Гаусса.



Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?

На самом деле надо ли задумываться о выборе параметрического или непараметрического теста? Ответ зависит от размере выборки. Есть четыре вещи о которых следует подумать:


  • Большая выборка. Что произойдет, если Вы используете параметрический тест с данными, которые были получены на Гауссовой популяции? Центральная предельная теорема гарантирует, что параметрический тест будет хорошо работать с большими выборками если даже популяция, из которой была получены выборка, не является Гауссовой. Иными словами параметрические тесты являются устойчивыми к отклонению от Гауссового распределения в том случае, если выборка достаточно большая. Проблема, однако, заключается в том, что невозможно сказать насколько большая является достаточно большой и это все зависит от природы определенного не Гауссового распределения. Однако в том случае, если популяция не является действительно очень странной, Вы по всей вероятности, можете достаточно спокойно выбирать параметрический тест, если у Вас имеется по крайней мере, две дюжины наблюдений в каждой группе.

  • Большая выборка. Что произойдет, если Вы будете использовать непараметрический тест с данными из Гауссовой популяции? Непараметрические тесты работают достаточно хорошо в большими выборками Гауссовой популяции. Р-значение имеет тенденцию быть немножко великоватым, но различия очень небольшие. Иными словами непараметрические тесты лишь ненамного менее мощны, чем параметрические тесты на больших выборках.

  • Небольшие выборки. Что произойдет, если Вы будете использовать параметрический тест с данными от не Гауссовой популяции? Вы не можете полагаться на центральную предельную теорему и поэтому р-значение будет неправильным.

  • Небольшие выборки. Что произойдет, если Вы будете использовать непараметрические тесты с данными из Гауссовой популяции? В этом случае р-оценка имеет тенденцию быть крайне высокой. Непараметрический тест не обладает достаточно высокой статистической мощностью на небольших выборках.

Поэтому большие наборы данных не представляют большой проблемы. Обычно достаточно легко сказать пришли ли данные из Гауссовой популяции, хотя на самом деле это уже не столь важно, поскольку непараметрические тесты достаточно мощны, а параметрические тесты устойчивы. Небольшие наборы данных как раз и являются основной проблемой. Достаточно сложно сказать пришли ли данные из Гауссовой популяции, однако это очень важно. Непараметрические тесты при небольшом объеме данных недостаточно мощны, а параметрические тесты не являются устойчивыми.




Одно или двухсторонняя p-оценка?

Для большинства статистических тестов Вы должны выбирать хотите ли Вы рассчитать одно- или двух- стороннюю р-оценку. Различия между одно и двухсторонней р-оценкой обсуждалось ранее, а теперь давайте вспомним про эти различия в контексте t-теста. Р-оценка подсчитывается для нулевой гипотезы что две популяции имеют одинаковые значения средних и любые различия между двумя выборочными средними являются следствием случайных факторов. Если эта нулевая гипотеза справедлива односторонняя р-оценка - это вероятность того, что две выборочных средних будут различаться настолько много, насколько было обнаружено или (даже больше) в направлении, которое было указано гипотезой за счет случайных факторов, даже если среднее в популяции в целом на самом деле равное. Двухсторонняя р-оценка также включает вероятность того, что выборочные средние могут различаться таким же образом и в противоположном направлении, то есть другая группа имеет большее среднее. Двухсторонняя р-оценка таким образом выше, чем односторонняя.

Односторонняя р-оценка является адекватной когда Вы можете точно установить (и перед сбором любых данных), что здесь нет никаких различий между средними либо различия будут идти в направлении, которое Вы можете указать с самого начала (то есть Вы можете указать в какой группе будут более высокие средние значения). Если Вы не можете указать направления или любые различия, прежде чем начинать сбор данных, тогда более адекватным будет использовать двухстороннюю р-оценку. Если Вы сомневаетесь, выбирайте двухстороннюю р-оценку.

Если Вы выбираете односторонний тест, Вы должны сделать это до сбора каких бы то ни было данных и Вам необходимо установить направление Вашей экспериментальной гипотезы. Если данные пойдут в другую сторону, Вы должны будете согласиться на то, что эти различия ассоциация или корреляция является следствием действия случайных факторов вне зависимости от того, насколько серьезными получаются эти различия. Если Вы будете заинтересованы (даже немного) тем, насколько данные могут пойти в "неправильном" направлении, то тогда Вы должны использовать двухстороннюю р-оценку. По этим и другим причинам