Файл: Учебнометодическое пособие знакомит студентов с основными понятиями о.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 482

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВЕДЕНИЕУчебно-методическое пособие знакомит студентов с основными понятиями о теории вероятностей, случайных процессах, статистическом оценивании и проверке гипотез, статистических методах обработки экспериментальных данных, математических методах, принятых в биологических исследованиях.Пособие состоит из четырех разделов: Введение в теорию вероятностей. Основные понятия и термины статистики. Статистические методы обработки экспериментальных данных. Компьютерная обработка данных анализа в специализированной программе EasyStatistics. Введение в теорию вероятностей дает представление о случайных событиях, вероятности и ее свойствах, случайных величинах и основных теоретических распределениях случайных величин.При изучении второго раздела разбираются понятия о совокупности и выборке, классификации признаков, дается представление о схемах научного эксперимента и научных гипотезах, достоверности и надежности результатов.Третий раздел знакомит со статистическими методами описания групп, способами их сравнения в зависимости от характера распределения исходных данных. Большое внимание уделено корреляционно-регрессионному анализу, лежащему в основе многомерных методов анализа. Разбираются широко распространенные в биологических исследованиях методы оценки динамики, цикличности и классификации. При описании каждого метода описываются условия, необходимые для проведения статистической обработки, и возможные трудности в интерпретации полученных показателей. Четвертый раздел посвящен практическому применению методов статистической обработки данных с помощью специализированной программы «Статистическая обработка медико-биологических данных» (EasyStatistics). Данная программа разработана автором пособия (Роспатент №2003612171) и предназначена для статистической обработки данных биологических и медицинских исследований и, в первую очередь, нацелена на выполнение курсовых и дипломных работ студентами. В то же время это не замена уже существующим мощным статистическим пакетам, таким как Statistica, а скорее дополнение, помогающее оценить возможности манипулирования данными и принципы работы с основными статистическими методами. Каждый раздел содержит список вопросов и заданий для самопроверки.Пособие также содержит список учебно-методических материалов, рекомендуемых для самостоятельной работы студентов.РАЗДЕЛ I. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙЗакономерности, которым подчиняются случайные события, изучаются в разделах математики, которые называются теорией вероятностей и математической статистикой.Понятие о случайном событииОпыт, эксперимент, на­блюдение явления называются испытанием. Испытаниями, напри­мер, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенными на каждую грань числом очков — от одного до шести).Результат, исход испытания называется событием. Для обозначения событий используются большие буквы ла­тинского алфавита: А, В, С и т. д.Два события называются совместимыми, если появление одного из них не исключает появление другого в одном и том же испытании.Испытание: однократное бросание игральной кости. Событие А — появление четырех очков. Событие В— появле­ние четного числа очков. События Аи В совместимые.Два события называются несовместимы­ми, если появление одного из них исключает появление другого в одном и том же испытании.Испытание: однократное бросание монеты. Собы­тие А — выпадение герба, событие В — выпадение цифры. Эти события несовместимы, так как появление одного из них исключает появление другого.Несовместимость более чем двух событий означает их попарную несовместимостьИспытание: однократное бросание игральной кости. Пусть события А1, А2, А3, А4, А5, А6 соответственно выпа­дение одного очка, двух, трех и т. д. Эти события являются несов­местимыми..Два события А и В называются проти­воположными, если в данном испытании они несовместимы и одно из них обязательно происходит.Событие, противоположное событию А, обозначают через А.Испытание: бросание монеты. Событие А — выпадение герба, событие В — выпадение цифры. Эти события противоположны, так как исходами бросания могут быть лишь они, и появление одного из них исключает появление другого, т. е. А = В или А = В.Событие называется достоверным, если в данном испытании оно является единственно возможным его ис­ходом, и невозможным, если в данном испытании оно заведомо не может произойти.Испытание: извлечение шара из урны, в которой все шары белые. Событие А — вынут белый шар — достоверное событие; событие В — вынут черный шар — невозможное событие.Достоверное и невозможное события в данном испытании являются противоположными.Событие А называется случайным, если оно объективно может наступить или не наступить в данном испы­тании.Выпадение шести очков при броса­нии игральной кости — случайное событие. Оно может наступить, но может и не наступить в данном испытании.Прорастание девяноста восьми зерен пшеницы из ста — случайное событие. Это событие может наступить, но, может быть, прорастет зерен больше или меньше.Классическое определение вероятностиВсякое испыта­ние влечет за собой некоторую совокупность исходов — резуль­татов испытания, т. е. событий. Во многих случаях возможно пере­числить все события, которые могут быть исходами данного испы­тания.Говорят, что совокупность событий обра­зует полную группу событий для данного испытания, если его ре­зультатом обязательно становится хотя бы одно из них.События Ul, U2, ..., Un , образующие полную группу попарно несовместимых и равновозможных собы­тий, будем называть элементарными событиями.Вернемся к опыту с подбрасыванием игральной кости. Пусть Ui — событие, состоящее в том, что кость выпала гранью с цифрой i. Как уже отмечалось, события U1, U2, …, U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметрич­ной, то события U1, U2, …, U6 являются и равновозможными, т. е. элементарными.Событие А называется благоприят­ствующим событию В, если наступление события А влечет за собой наступление события В.Пусть при бросании игральной кости события U2, U4 и U6 — появление соответственно двух, четырех и шести очков и А — событие, состоящее в появлении четного очка; собы­тия U2, U4 и U6 благоприятствуют событию А.Классическое определение вероятностиВероятностью Р (А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А — выпадение герба и событие В — выпадение цифры — образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно со­бытие — само А, т. е. здесь m = 1. Поэтому Р(А) = 0,5.Найти вероятность того, что при бросании иг­ральной кости выпадет число очков, делящееся на 2 (событие А). Число элементарных событий здесь 6. Число благоприятст­вующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому .Из приведенного классического определения вероятности вы­текают следующие ее свойства.1. Вероятность достоверного события равна единице.Действительно, достоверному событию должны благоприят­ствовать все n элементарных событий, т. е. m = n и, следовательно, P(A)=1.2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприят­ствовать ни одно из элементарных событий, т. е. m = 0, откуда P(A)=0.3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n , значит, 0 <= Р (А)<= 1.Относительная частота.Статистическое определение ве­роятности.Классическое определение вероятности не являет­ся пригодным для изучения произвольных случайных событий. Так, оно неприемлемо, если результаты испытания не равновозможны. Например, при бросании неправильной игральной кости выпадение ее различных граней не равновозможно.В таких случаях используется так называемое статистическое определение вероятности.Пусть произведено n испытаний, при этом некоторое событие А наступило m раз. Число m называется абсолютной часто­той (или просто частотой) события А, а отношение называется относительной частотой события А.При транспортировке из 10 000 арбузов испор­тилось 26. Здесь m= 26 — абсолютная частота испорченных ар­бузов, а P*(A)=0,0026 относительная.Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число n сравнительно мало, относительная частота Р*(A) принимает зна­чения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n — числа испытаний в сериях — относитель­ная частота Р*(А) приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500;0,497; 0,494; 0,484. Эти частоты группируются около числа 0,5Статистическое определение вероят­ностиВероятностью события А в данном испытании называется число Р (А), около которого группируются значения относительной частоты при больших n.По официальным данным шведской статистики, относительные частоты рождения девочек по месяцам 2007 г. харак­теризуются следующими числами (расположены в порядке сле­дования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473. Эти частоты группируются около числа 0,482.Таким образом, относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточно велико. Геометрическая вероятностьДо этого мы рассматривали возможные эксперименты, в которых реализуется конечное множество событий. Однако существует большое количество задач, для которых такое предположение не является справедливым. При решении таких задач предполагается, что множество реализуемых событий может быть представлено в виде некоторой геометрической фигуры, а конкретное событие соответствует точке заданной части этой фигуры. В качестве события A можно рассмотреть любую подобласть области Ω. Например, фигуру внутри исходной фигуры на плоскости или отрезок, лежащий внутри исходного отрезка на прямой.Заметим, что элементарным событием на таком множестве может быть только точка. В самом деле, если множество содержит более одной точки, его можно разбить на два непустых подмножества. Следовательно, такое множество уже неэлементарно.Теперь определим вероятность. Тут тоже все легко: вероятность «попадания» в каждую конкретную точку равна нулю. Иначе получим бесконечную сумму одинаковых положительных слагаемых (ведь элементарные события равновероятны), которые в сумме больше P(Ω) = 1.Итак, элементарные события для бесконечных областей Ω — это отдельные точки, причем вероятность «попадания» в любую из них равна нулю. Но как искать вероятность неэлементарного события, которое, подобно Ω, содержит бесконечное множество точек? Вот мы и пришли к определению геометрической вероятности.Геометрическая вероятность события A, являющегося подмножеством множества Ω точек на прямой или плоскости — это отношение площади фигуры A к площади всего множества Ω.Мишень имеет форму окружности. Какова вероятность попадания в ее правую половину, если попадание в любую точку мишени равновероятно? При этом промахи мимо мишени исключены. Взглянем на картинку: нас устроит любая точка из правого полукруга. Очевидно, площадь S(A) этого полукруга составляет ровно половину площади всего круга, поэтому имеем P=0,5Студент и студентка договариваются о встрече на заданном промежутке времени Т. Тот, кто приходит первым ожидает другого в течение времени tВ качестве множества элементарных событий рассмотри квадрат, состоящий из точек (x,y), 0<=x<=T, 0<=y<=T, где x и у время прихода его и ее.Благоприятсвующие события образуют точки, для которых |x-y|<t, т.е. точки квадрата между прямыми y=x-t, y=x+t. Площадь получающейся фигуры равна T2-(T-t)2, а площадь всего квадрата – Т2. Отсуда искомая вероятность Свойства вероятностейСложение вероятностей несовместимых событийСуммой событий А и В называется собы­тие С = А + В, состоящее в наступлении по крайней мере одного из событий А или В.Стрельба двух стрелков (каждый де­лает по одному выстрелу). Событие А — попадание в мишень пер­вым стрелком, событие В — попадание в мишень вторым стрелком. Суммой событий А и В будет событие С = А + В, состоящее в попадании в мишень по крайней мере одним стрелком.Произведением событий А и В назы­вается событие С = АВ, состоящее в том, что в результате испыта­ния произошло и событие А, и событие В.Аналогично произведением конечного числа событий A1 А2, …, Ak называется событие А = А1 * A2 * ... * Ak, состоящее в том, что в результате испытания произошли все указанные события.В условиях предыдущего примера произведением событий А и В будет событие С = АВ, состоящее в попадании в мишень двух стрелков.Из определения непосредственно следует, что АВ = ВА.Вероятность суммы двух несовместимых событий А и В равна сумме вероятностей этих событий:Р (А + В) = Р (А) + Р (В). Следствие. Сумма вероятностей противоположных собы­тий А и А равна единице:Р(А) + Р(А

Коэффициент сопряженности Чупрова. Дальнейшим обоб-щением четырехпольных таблиц являются многопольные таблицы, для которых сопряженность наиболее часто оценивается по формуле, предложенной русским статистиком А. А. Чупровым. Прежде чем приводить ее рассмотрим несколько реальных ситуаций, когда такая оценка может потребоваться. Известно, например, что окраска тюльпанов связана с наличием определенных пигментов. Может представлять интерес вопрос о том, с какими именно пигментами преимущественно связана та или иная окраска цветка. Или другой пример. Окружающая гнездо полярной крачки обстановка может представлять собой зеленые растения, растения и гальку, пестрые камешки и т. д. При этом можно наблюдать самые разные по качеству гнезда: от его отсутствия до очень хорошо сделанного. В этом случае желательно знать, связано ли качество гнезда с какой-то одной или несколькими характеристиками окружающей среды. Общим для этих и других подобных задач является то, что в распоряжении экспериментатора оказываются данные о некотором множестве объектов, обладающих двумя признаками, причем каждый из признаков может иметь несколько градаций. В этом случае , где m - число разновидностей явления Х; k - число разновидностей явления Y, n – общее число объектов (m*k). Независимо то того, что каждый из описательных признаков, несмотря на разницу в численности его разновидностей, можно свести к альтернативному - только с двумя разновидностями, довольно часто в практике возникает необходимость работать с описательными признаками более двух разновидностей. В таких случаях необходимо при вычислении коэффициента корреляции составлять так называемую корреляционную таблицу (где X1,X2,...Xn - обозначают разновидность одного признака, а Y1, Y2... Yn - разновидности другого).При наличии такой схемы коэффициент корреляции находят по формуле: , где - коэффициент связи, m- число разновидностей явления Х; k - число разновидностей явления Y.Данный метод пригоден также и для экспрессной оценки связи между количественными (например возраст) и качествен-ными (например брак) параметрами.На практике (особенно в зоологии и ботанике) довольно часто встречаются другие меры измерения связи.



Продолжительность цикла, в течение которого происходят соответствующие изменения, может иметь иногда длительность секунд (например пульсация сердца), а иногда и многих лет (солнечная радиация - 11 лет).

Лучше всего изучены вопросы цикличности, встречающейся наиболее часто. Это так называемая сезонная цикличность. Для примера можно сказать, что заболеваемость многими болезнями обладает характерными сезонными колебаниями.

Для того чтобы выяснить, каким образом можно количественно охарактеризовать сезонность, необходимо предва-рительно вкратце остановиться на причинах, определяющих те или иные величины изучаемых явлений. Изменения в этих явлениях могут быть охарактеризованы путем перемен, наступающих с течением времени. Эти изменения являются сложным результатом одновременного действия многих разнообразных причин, которые можно свести в три основные группы.

Первая - это причины с длительным сроком действия. Они действуют непрерывно в течение всего рассматриваемого периода и могли бы быть названы постоянно действующими причинами.

Вторая группа причин - временно действующие факторы. Временно действующие причины можно отнести к случайным. Они действуют в двух направлениях. Иногда они приводят к увеличению величины изучаемого явления, а иногда приводят к понижению. Так, например, к категории случайных причин, влияющих на величину популяции, можно отнести благоприятный или неблагоприятный климат данного календарного года или же неблагоприятное влияние в данном году какой-либо эпидемии. Временно действующие причины не определяют основную динамику показателей, но в известной степени сказываются на ее размерах.

Третья группа причин, вызывающих изменения исследуемых явлений, это сезонно действующие факторы. Они называются так потому, что действуют в зависимости от цикличной смены времен года.

Однако не следует считать, что перечисление упомянутых трех видов факторов дает полную классификацию причин, оказывающих влияние на изучаемые явления. В зависимости от специфики и характера этих явлений, от стоящей перед научным исследованием задачи к продолжительным, временным и сезонным причинам можно добавить и ряд других, например причины действующие, с разной силой в течение суток.

Все причины действующие на изучаемое явление


=

Длительно действующие причины


+

Временно действующие причины


+

Сезонно действующие причины


Статистические методы, задачей которых является количест-венная характеристика влияния сезонных факторов, последовательно устраняют влияние на фактические данные, характеризующих изучаемое явление, случайно действующих факторов. Затем то же самое проделывают в отношении влияния продолжительно действующих причин. Под конец из полученных данных вычисляют индексы сезонного действия по отношению к общему основанию. Для этой цели подбирают общую среднюю.
Метод обычных средних
Преимуществом этого метода является то, что применение его не требуется тогда, когда не существует ясно выраженной длительной тенденции в развитии изучаемых явлений. Это можно вычислить из коэффициента b из годовых данных путем графического изображения и соответствующего анализа годовых данных или путем внимательного их рассмотрения для того, чтобы определить, существует или нет тенденция в изменении числовых данных.

После предварительного качественного анализа, если нет оснований считать, что имеется ясно выраженная тенденция в развитии изучаемого явления, применение метода обычных средних проходит через следующие этапы работы:

  1. Суммируют числовые данные отдельно для каждого календарного месяца за все годы рассматриваемого периода. Получают 12 итогов, соответствующих месяцам: январь, февраль ... декабрь.

  2. Полученные суммы делят на число лет, числовые значения которых суммированы; получают 12-месячных средних. Они дают представление о типичном уровне изучаемого явления, соответствующем календарным месяцам года. Задача усреднения заключается в удалении влияния временно действующих случайных причин.

  3. Производят усреднение 12-месячных средних и находят одну общую среднюю. Это усреднение применяется для устранения сезонно действующих причин.

  4. Относят каждую из 12-месячных средних к общей средней. Так как в 12-месячных средних сохранено влияние сезонно действующих причин, а в общей средней оно устранено, то таким образом удается количественно охарактеризовать действие сезонных факторов. Полученное частное умножают на 100 для выражения результатов в процентах и затем устанавливают влияние сезонно действующих факторов для каждого месяца в отдельности. В статистике этот метод называется получением индексов. Именно поэтому полученный конечный результат - вычисленные показатели - называются индексами сезонных колебаний.



Метод корригирования средних
В качестве недостатка метода обычных средних указывают на то, что он дает количественную оценку сезонно влияющих факторов только тогда, когда отсутствует влияние длительно действующих факторов. Однако часто в изучаемых явлениях встречается наличие такой тенденции. В этих случаях необходимо при определении индексов сезонных колебаний учитывать влияние длительно действующих причин. Для этой цели пользуются методом корригирования средних. Для того чтобы найти индексы сезонных колебаний, поступают следующим образом.

Предварительно нужно решить вопрос, существует ли тенденция в изменении размеров изучаемого показателя и каков характер этого изменения: прямолинейный или криволинейный.

Метод корригированных средних может быть применен только в случае прямолинейной тенденции в изменении изучаемого показателя. Далее устраняют влияние временно действующих причин. Для этого сначала складывают фактические данные по месяцам, а затем делят полученные суммы на количество лет. Получают 12 средних. Далее устраняют влияние длительно действующих причин, влияющих на изучаемый фактор. Путем сложения отдельно за каждый год изучаемого периода фактических чисел получают данные за все годы. Производят выравнивание этих данных методом наименьших квадратов и получают величину b. Коэффициент b показывает годичное увеличение или снижение годовых данных. Если разделить коэффициент b на 12, получится годичное увеличение или снижение месячных данных, т. е. на сколько в среднем снижается или увеличивается в течение двух одинаковых календарных месяцев в двух смежных годах. Если разделить затем коэффициент b еще раз на 12, т. е. b:144, получится месячное увеличение или снижение данных за месяц, т. е. на сколько изменяется изучаемый параметр в двух соседних календарных месяцах одного и того же года. Следовательно, корригирующий коэффициент, при помощи которого можно устранить влияние длительно действующих причин, равен b:144. Коррекцию производят следующим образом: если развитие нисходящее (b со знаком минус), то к средней за январь прибавляют коррекцию, равняющуюся нулю, к средней за февраль прибавляют коэффициент коррекции, к средней за март - удвоенный коэффициент и т. д. до средней за декабрь, к которой добавляют коэффициент коррекции, умноженный на 11. Если развитие восходящее, то из средней каждого месяца вычитают соответствующий коэффициент коррекции.


Исправленные таким образом месячные средние усредняют путем сложения и деления суммы на 12. Получается общая средняя, в которой устранено влияние сезонно действующих факторов. Далее относят каждую из 12-месячных средних к общей средней и получают индексы сезонных колебаний. Эти индексы количественно характеризуют сезонность в каждом месяце отдельно, так как в знаменателе (принятом за базу и равняющимся 100) стоит величина общей средней, очищенной от влияния всех причин, включая и сезонно действующие, а в числителе - величина корригированных месячных средних, в которых сохранено влияние только сезонно действующих факторов.

Истолкование этих индексов сезонных колебаний следующее: если принять, что средний типичный уровень изучаемого показателя за отдельные календарные месяцы равен 100 %, то величина индексов за остальные месяцы покажет колебания.
Метод отношения фактических данных

к 12-месячным цепным средним.
Метод корригированных средних принимает во внимание и правильно учитывает влияние длительно действующих факторов только тогда, когда тенденция развития, вызванная влиянием этих факторов, прямолинейна. Однако тенденция в развитии явлений, может быть какой угодно.

По сравнению с методами обычных и корригированных средних данный метод имеет то преимущество, что позволяет учесть влияние длительно действующих факторов независимо от того, какова форма тенденции развития - прямолинейная или криволинейная.

Ход работы

1. Вычисляют 12-месячные цепные средние. Следует отметить, что при этом цепные осреднения не могут быть вычислены для первых шести месяцев первого года и за последние 5 месяцев последнего года. Усреднение на этом этапе работы проводится для устранения временно действующих и сезонно действующих причин. Следовательно в каждой из 12-месячной цепной средней осталось только влияние длительно действующих факторов.

2. Делят фактические данные каждого месяца отдельно на 12-месячные цепные средние и полученный результат умножают на 100. Это действие производится для исключения учета влияния временно действующих и сезонно действующих факторов. Следует напомнить, что фактические данные отражают на себе влияние как длительно действующих, так и временно и сезонно действующих причин, а 12-месячные цепные средние - влияние только длительно действующих причин. Следовательно принимая за основание деления 12-месячные цепные средние, исключают влияние временно и сезонно действующих причин.


3. Полученные таким образом результаты усредняют помесячно и получают 12 месячных средних. Это делается для устранения временно действующих случайных причин. Следовательно в полученных месячных средних осталось влияние только сезонно действующих причин.

4. Производят усреднение 12-месячных средних и получают общую среднюю. В этой средней устранено влияние сезонно действующих причин.

5. Находят индексы сезонных колебаний путем отношения каждой из месячных средних к общей средней, результат умножают на 100 для получения результатов в процентах.
Ошибки, допускаемые при количественной характеристике

сезонных колебаний
1. Иногда, для того чтобы выразить сезонные колебания, пользуются месячными экстенсивными показателями. Для этого годовое число принимают за 100 %, а месячные числа распре-деляют в процентах по отношению к итогу. Этот метод мало чем отличается от метода, описанного под названием “Метод обычных средних”. Однако существуют два обстоятельства, дающих основание предпочитать метод обычных средних применению метода экстенсивных показателей. Во-первых, базой для сравнения месячных средних при пользовании методом обычных средних является среднегодовой уровень равный 100 %, а при методе экстенсивных показателей 8,33=10/12. Во-вторых, при помесячных процентных показателях не учитывается различная длина месяца. В-третьих, тогда, когда в развитии изучаемого явления сказывается наличие длительно действующих факторов, следует применять иные методы количественной характеристики сезонности (метод корригированных средних, метод отношений).

2. Недооценка фактора сезонности может привести к неправильным выводам. Например, было отмечено, что такой антропометрический признак как “вес” имеет более высокие значения осенью и зимой и более низкие весной и летом.

3. Наиболее подходящим способом графического изображения сезонных колебаний является построение круговой линейной диаграммы.
Кластерный анализ
Кластерный анализ является одним из базовых методов распознавания образов без обучения. Методами кластерного анализа решается задача разбиения (классификации, кластеризации) множества объектов таким образом, чтобы все объекты, принадлежащие одному кластеру (классу, группе) были более похожи друг на друга, чем на объекты других кластеров. В отечественной литературе синонимом термина "кластерный анализ" является термин "таксономия". В иностранной литературе под таксономией традиционно понимается классификация видов животных и растений.