Файл: ОСНОВЫ ХИМИИ НЕФТИ И ГАЗА.doc

Добавлен: 08.02.2019

Просмотров: 4363

Скачиваний: 38

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


2.6.2.4. Сернистые соединения нефтей


В зависимости от природы нефти содержание серы в нефтях может изменяться от десятых долей до нескольких процентов.

Содержание различных классов сернистых соединений в некоторых нефтях представлено в табл. 11.

Распределение сернистых соединений по фракциям нефти различно. С повышением температуры кипения фракций содержание сернистых соединений увеличивается.

Таблица 11

Распределение сернистых соединений в высокосернистых нефтях

различных месторождений России

Регион

Содержание серы,

% масс.

Распределение серы в расчёте на общее её содержание,

% масс

Тиолы

Сульфиды

Гомологи тиофена и

высокомолекулярные структуры

Башкирская АССР

1,9-4,0

0-10

6-40

50-94

Татарская АССР

0,9-4,0

0-2,6

11-36

61-89

Куйбышевская обл.

2,0-3,7

0,09-7,3

7,4-24

69-92

Оренбургская обл.

2,6-3,2

0,72-2,7

7,3-20

77-92

Пермская обл.

1,0-3,1

0-7,2

7,6-29

63-93

Сибирь

0,9-3,0

0-74

0-28

26-92


Большая часть (70-90% масс.) их сосредоточена в тяжёлых нефтяных остатках (мазуте и гудроне) и особенно в асфальто-смолистой части.

Распределение сернистых соединений по нефтяным фракциям зависит от типа нефти (табл. 12).

Таблица 12

Распределение серы по фракциям сернистых и

высокосернистых нефтей, % масс.

Регион

Фракции, 0С

н.к.-120

120-200

200-250

250-300

Башкирская АССР

0,02-0,57

0,08-1,74

0,35-2,5

0,67-3,95

Татарская АССР

0,02-0,25

0,05-1,04

0,17-2,29

0,72-3,13

Куйбышевская обл.

0,02-0,27

0,02-0,75

0,02-1,61

0,07-3,18

Оренбургская обл.

0,01-0,18

0,11-0,67

0,38-1,17

1,18-2,4

Пермская обл.

0,02-0,10

0,06-0,59

0,12-1,56

0,25-2,59

Сибирь

0,01-0,05

0,02-0,36

0,16-0,72

0,43-1,58


Содержание сернистых соединений в нефтяных фракциях можно приближённо определять по эмпирической формуле А.К. Каримова:

где r- содержание сернистых соединений в данной фракции, % масс.;

а - содержание серы в данной фракции, % масс.;

М - молекулярная масса фракции.

В табл. 13 для примера приведён групповой состав сернистых соединений двух нефтей с общим содержанием серы в одной около 1 % (Сызранская нефть), в другой около 5% (Чусовская нефть).


Таблица 13

Групповой состав сернистых соединений некоторых нефтей


Температура выкипания фракций

Количество серы, % масс.

Количество серы в % масс. на общее содержание серы в данной фракции в виде:

0С

на фракцию

сероводорода

элементарной серы

меркаптанов

сульфидов

дисульфидов

* остаточное

Сызранская нефть

до 200

0,18

5,4

13,6

39,7

1,6

1,1

38,6

1

2

3

4

5

6

7

8

200-300

1,02

1,0

10,4

1,0

1,9

8,8

76,9

Чусовская нефть

до 200

0,40

7,3

4,3

15,4

32,4

0,5

40,0

200-300

2,78

0,0

2,1

2,5

15,1

11,8

68,2


* Существенная часть “остаточной” серы входит в тиофеновые и бензо-тиофеновые

структуры.



Происхождение сернистых соединений нефти

Существуют различные предположения о происхождении сернистых соединений, содержащихся в нефтях.

Наиболее вероятно, что сернистые соединения образовались в природных нефтях в результате окислительно-восстановительных процессов, происходящих между сульфатами и углеводородами в течение геологического времени.

Процесс осернения природных органических веществ, включая нефти, состоит из нескольких стадий. Первой стадией является реакция окисления углеводородов и других органических соединений присутствующими в подземных водах сульфатами металлов, которые при этом восстанавливаются в сульфиды и гидросульфиды:

Образующиеся сульфиды и гидросульфиды разлагаются с образованием сероводорода:

Далее предельные углеводороды, взаимодействуя с сероводородом, образуют низшие гомологи и элементарную серу:

Свободная сера может образоваться также за счёт окисления сероводорода оксидами металлов, присутствующими в отложениях или же растворёнными в водах сульфатами:

Далее идут собственно процессы осернения, т.е. реакции между серой и углеводородом и другими органическими соединениями, входящими в состав нефтей и нефтеобразующих веществ, и образование серусодержащих органических молекул.

Некоторые исследователи полагают, что часть сернистых соединений унаследована от исходного органического вещества, в частности, от протеинов.


Влияние на свойства нефтепродуктов и применение

сернистых соединений

Присутствующие в нефтях сернистые соединения затрудняют её переработку, главным образом, из-за коррозии аппаратуры и отравления катализаторов.

Увеличение содержания сернистых соединений в топливах увеличивает расход топлива, способствует коррозионному износу двигателя. Образующиеся при сгорании топлив оксиды серы загрязняют атмосферу, нанося большой вред окружающей среде. Поэтому в настоящее время широко используют процессы очистки нефтепродуктов от сернистых соединений.

В то же время сернистые соединения являются ценным сырьём для органического синтеза, поэтому начинают развиваться процессы выделения их из нефтяных фракций.

Меркаптаны находят применение для регулирования скорости полимеризации каучуков и как антиоксидантные добавки к полимерам и топливам.

Сульфиды применяют для синтеза красителей и биологически активных веществ. Продукты окисления сульфидов – сульфоксиды, сульфоны и сульфокислоты находят применение как растворители и экстрагенты металлов (таких как золото, платина, серебро и др.). Сульфиды и сульфоксиды являются хорошими ингибиторами коррозии металлов, применяются как флотореагенты, поверхностно-активные вещества, пластификаторы, а также инсектициды, гербициды и фунгициды.

Тиофены применяются для синтеза присадок к маслам и топливам, синтеза стимуляторов роста растений и полимерных материалов.



2.6.3. Азотистые соединения


Содержание азота в составе нефтей не превышает 0,3%, а содержание азотистых соединений максимально достигает 10% в высокосмолистых нефтях.

Содержание азота в нефтях зависит, главным образом, от географического расположения месторождений и, в меньшей степени, от геологической формации, из которой получена нефть. Нефти с наибольшим содержанием азотистых соединений добываются из третичных отложений.

В лёгких фракциях нефти азотистые соединения отсутствуют или обнаруживаются в ничтожных количествах. С увеличением температуры кипения фракций содержание азотистых соединений в них возрастает, и, как правило, больше половины азотистых соединений сосредоточено в смолисто-асфальтовой части.

В нефтях обнаружены азотистые соединения, относящиеся к классу аминов и амидов кислот.


2.6.3.1. Амины


Амины - производные аммиака, у которого один, два или все три атома водорода замещены органическими группами. В зависимости от этого их подразделяют на первичные, вторичные и третичные:

В зависимости от органической группы, связанной с атомом азота, амины подразделяют на алкил-, арил- и гетероциклические.

Номенклатура. Алкиламины называют, прибавляя окончание -амин к названию алкильных групп, связанных с атомом азота:


Ариламины, а также амины с двумя, тремя и большим числом аминогрупп рассматриваются как аминопроизводные углеводородов. Многие ариламины имеют тривиальные названия:

Гетероциклические амины обычно имеют тривиальные названия:

Физические свойства. Первичные и вторичные амины - полярные соединения и могут образовывать водородные связи с водой. Поэтому низкомолекулярные амины хорошо растворяются в воде.

Низшие алкиламины - газы, высшие - жидкости или твёрдые вещества, которые легко окисляются на воздухе и темнеют. Они обладают неприятным запахом, ядовиты. Физические свойства некоторых аминов представлены в табл. 14.


Таблица 14

Название

Температура плавления, 0С

Температура кипения, 0С

Метиламин

-92

-7,5

Диметиламин

-96

7,5

Диэтиламин

-39

55

Триэтиламин

-115

89

Анилин

-6

184

Пиридин

-42

115

Хинолин

-15

237

Акридин

108

346

Пиррол

-

131

Индол

52,5

254

Карбазол

238

355


Химические свойства. Вследствие того, что азот аминогруппы содержит неподеленную пару электронов, амины проявляют основные свойства.

Амины реагируют с кислотами, присоединяя протон по свободной паре электронов атома азота, образуя соли, аналогичные солям аммония:

R-NH2 + HCl → [R-NH3]+Cl- .

Присоединение протона происходит и в водных растворах аминов:

Ариламины обладают основными свойствами значительно более слабыми, чем алкиламины.

Пиридин и родственные соединения являются основаниями средней силы и также взаимодействуют с протоном:


С другой стороны, производные пиррола разлагаются в кислой среде:

Как было уже отмечено, при взаимодействии с кислотами амины превращаются в соответствующие соли аммония. Из этих солей можно опять получить исходный амин, если обработать их сильной щёлочью, например, едким натром. Эти реакции применяют для выделения аминов, обладающих основными свойствами, из нефти и нефтепродуктов, поскольку амины в отличие от других соединений нефти растворяются в разбавленной кислоте и могут быть регенерированы при подщелачивании.

С первичными и вторичными аминами реагирует азотистая кислота. С третичными алкиламинами на холоде она не взаимодействует.

С первичными алкиламинами азотистая кислота реагирует с выделением азота и образованием спиртов, алкенов и других веществ.

По химическим свойствам гетероциклические соединения близки к аренам. Так, гидрирование пиридина приводит к образованию пиперидина:

Амины в нефти. В нефти и нефтепродуктах различают амины основного и нейтрального характера. К соединениям основного характера относятся те, которые удаётся извлечь раствором кислоты. Количество азотистых оснований может достигать 50 % от суммы всех соединений азота. С увеличением температуры выкипания фракций доля азотистых оснований в них уменьшается. Большая часть азотистых оснований сосредоточена в керосиновых, дизельных и газойлевых фракциях. Амины основного характера представлены преимущественно третичными аминами: производными пиридина, хинолина, изохинолина, в меньшей степени акридина.

Присутствуют также ариламины: пиридины, толуидины, ксилидины.

Алкиламины в нефтях не обнаружены. В некоторых нефтях присутствуют соединения, содержащие в молекуле два атома азота типа индол- и карбазолхинолинов. Встречаются также соединения, содержащие в молекуле одновременно атомы азота и серы:

К аминам нейтрального характера, присутствующим в нефтях, относятся алкилпроизводные пиррола, индола и карбазола. В высших фракциях нефти присутствуют порфирины, молекула которых состоит из четырёх пиррольных колец. Они находятся в нефтях как в свободном состоянии, так и в виде комплексных соединений с металлами, главным образом с ванадием и никелем.

Большое содержание порфиринов характерно для сернистых нефтей. Содержание порфиринов в некоторых нефтях достигает 0,1%, но обычно оно значительно меньше.


2.6.3.2. Амиды кислот


Амиды - соединения, в которых гидроксильная группа карбоновых кислот замещена на аминогруппу.

Названия амидов производят от систематического названия соответственно кислоты, заменяя окончания -овая на -амид.

бутанамид

Все амиды кислот - бесцветные кристаллические вещества (за исключением жидкого амида муравьиной кислоты - формамида). Низшие гомологи растворимы в воде. Из-за наличия межмолекулярных водородных связей они ассоциированы, и поэтому имеют относительно высокие температуры плавления и кипения.


Химические свойства. В отличие от аминов у амидов основные свойства выражены очень слабо. Это объясняется тем, что карбонильная группа оттягивает свободную пару от атома азота - мезомерный эффект, в результате которого происходит понижение на нём электронной плотности:

Поэтому амиды взаимодействуют лишь с очень сильными кислотами, образуя неустойчивые соли:

В то же время амиды являются слабыми кислотами:


Амиды медленно гидролизуются водой. Быстрее реакция протекает в присутствии кислот или оснований:

Амиды, восстанавливаясь, превращаются в амины:

При обработке амидов азотистой кислотой происходит выделение азота и образование карбоновой кислоты:

При дегидратации (отнятии воды) амиды переходят в нитрилы:

Ацетонитрил приобрёл большое значение как ценный растворитель и как мономер в синтезе полимеров.

Амиды кислот в нефти. Амиды кислот относят к нейтральным азотистым соединениям нефти. Они составляют главную часть этой группы соединений. Содержание и структура амидов, присутствующих в нефти, изучены пока недостаточно. Установлено, что основная масса их является третичными амидами.


2.6.3.3. Происхождение азотистых соединений нефтей.

Влияние на свойства нефтепродуктов и применение


Считается, что основные азотистые соединения унаследованы от животного и растительного вещества, составляющего исходный материал нефти.

Вероятными источниками пирролов и индолов, а, возможно, и пиридиновых производных являются протеины и пигменты (хлорофилл и др.).

Механизм превращения исходного вещества в азотистые соединения ещё не известен. Полагают, что анаэробное брожение протеинов приводит к образованию амидов и других производных аминокислот и соединений, содержащих пиррольные кольца. При доступе воздуха дальнейшее изменение молекулы протекает до аммиака.

Присутствие порфиринов, которые имеют такое же строение, как и гемин (красящее вещество крови) и хлорофилл, принято считать доказательством органического происхождения нефти. Порфириновые комплексы нефти оптически активны, способны ускорять окислительно-восстановительные реакции, поэтому предполагают, что они принимают активное участие в процессах генезиса нефти.

Азотистые соединения склонны к образованию продуктов осмоления и уплотнения, что ухудшает эксплуатационные свойства реактивных и дизельных топлив. Они оказывают отрицательное влияние на катализаторы в процессах нефтепереработки.

В настоящее время лишь незначительная часть азотистых соединений, выделенных из нефти, находит применение в качестве ингибиторов коррозии для защиты бурового и нефтепромыслового оборудования, антикоррозионных присадок к смазочным маслам и крекинг-топливам, а также как составная часть инсектицидов.

Эти исключительно важные соединения нефти ещё не используются как химическое сырьё. Это объясняется тем, что пока нет удовлетворительных методов разделения азотистых соединений нефти на фракции с близким составом и свойствами.