Файл: ОСНОВЫ ХИМИИ НЕФТИ И ГАЗА.doc

Добавлен: 08.02.2019

Просмотров: 4360

Скачиваний: 38

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Исключительный интерес для промышленности представляет процесс неполного окисления бутана, позволяющий получить большое количество альдегида и уксусной кислоты:

В зависимости от температуры процесса соотношение между продуктами окисления может существенно меняться.

Продукты окисления низших алканов находят применение в качестве готовой продукции или полупродуктов при синтезе присадок, моющих средств, алкилирующих агентов, компонентов ракетного топлива, растворителей.

Важное промышленное значение приобрело каталитическое окисление высших алканов (С1225) с целью получения высших жирных спиртов и жирных кислот (ВЖС) (работы акад. С.С. Наметкина).

Сырьём являются парафины, получаемые при депарафинизации нефтепродуктов:

Образующиеся продукты используются для получения поверхностно-активных соединений, моющих средств, пластификаторов.

Комплексообразование. Газообразные алканы образуют твёрдые комплексы с водой. Эти комплексы относятся к так называемым соединениям включения или клатратным соединениям. Комплексы газообразных углеводородов с водой образуются при пониженной температуре (~ 0 0С). Иногда в газопроводах они могут быть причиной закупорки. В присутствии молекул газа вода кристаллизуется с образованием клеток, в которых заключены молекулы алкана («гость»). Так, пропан при давлении 0,4 Мпа и температуре 2 0С образует в воде кристаллическое соединение С3Н8·17Н2О.

Алканы нормального строения, начиная с гептана, образуют при комнатной температуре соединения включения с мочевиной H2NCONH2. В этих соединениях молекулы мочевины соединяются между собой с помощью водородных связей и образуют спиралевидные гексагональные каналы диаметром 4,9 А0, в которых находятся молекулы алкана.

Диаметр эффективного поперечного сечения молекулы алкана нормального строения 3,8 – 4,2 А0. Поэтому молекулы н-алканов умещаются в этом канале в отличие от молекул изоалканов, эффективный диаметр которых значительно больше. Благодаря этому комплексообразованием с мочевиной можно отделить н-алканы от разветвлённых алканов. Однако слаборазветвлённые алканы, молекулы которых имеют участок прямой цепи из 10 атомов углерода, также образуют устойчивые комплексы с мочевиной.

Тиомочевина

образует соединения включения с изопарафинами. Диаметр гексагонального канала, образованного молекулами тиомочевины в соединении включения, равен 7А0; в этот канал могут быть легко включены молекулы даже сильно разветвлённых алканов. Молекулы углеводородов в соединениях включения мочевины и тиомочевины удерживаются с помощью сил Ван – дер – Ваальса. Возможно также наличие слабых водородных связей.


2.2.5. Алканы нефти


Алканы занимают исключительно важное место среди углеводородов нефти. Так, природные газы представлены почти исключительно алканами.


Общее содержание алканов в нефтях составляет 40-50% (об.), а в некоторых нефтях оно достигает 50-70%. Однако есть нефти, в которых содержание алканов составляет всего 10-15%.

Лёгкие фракции любых нефтей почти целиком состоят из алканов. С повышением средней молекулярной массы фракций нефти содержание в них алканов уменьшается. В средних фракциях, выкипающих в пределах 200-300 0С, их содержится обычно не более 55-61%, а к 500 0С количество этих углеводородов снижается до 19-5% и менее.

Газообразные алканы. В зависимости от месторождений и методов добычи углеводородные газы подразделяются на природные, попутные и газы газоконденсатных месторождений.

Природные газы - газы чисто газовых месторождений. Они состоят, в основном, из метана (93-99%) с небольшой примесью этана, пропана, бутанов, пентанов. Во многих природных газах содержится значительное количество диоксида углерода, азота, а также сероводорода и благородных газов (Ar, Ne и др.).

В виду резкого преобладания метана большинство природных газов относят к так называемым сухим газам.

Месторождения природного газа размещаются в различных районах нашей страны. Особенно богата природным газом Западная Сибирь.

Попутные газы. Так принято называть газообразные углеводороды, сопровождающие сырую нефть. В условиях пластового давления эти газы растворены в нефти и в процессе её добычи выделяются вследствие снижения давления. Для этих газов характерно высокое содержание метана и наличие значительных количеств этана, пропана, бутанов и высших углеводородов вплоть до октана. Такие газы в отличие от сухих принято называть жирными или богатыми. Состав газов колеблется в значительных пределах и зависит от типа месторождения и условий добычи нефти. Попутные газы служат источником извлечения из них лёгкого бензина.

Газы газоконденсатных месторождений. Некоторые газовые месторождения с высоким пластовым давлением (до 25-30 МПа) отличаются тем, что газы насыщены жидкими нефтяными углеводородами. При разработке этих месторождений давление снижается, жидкие углеводороды конденсируются и могут быть отделены от газа в виде жидкого конденсата. После отделения конденсата газ приближается по составу к сухим газам, а конденсат содержит бензиновые и керосиновые фракции.

Химический состав газов, полученных из различных месторождений, приведён в табл. 4.






Таблица 4

Состав газов некоторых месторождений (% об.)

Месторождения

СН4

С2Н6

С3Н8

С4Н10

С5Н12

СО2

Н2S

N2

+другие

Газовые









Заполярное

98,6

0,07

0,02

0,013

0,011

0,18

-

1,11

Уренгойское

95,2

1,0

0,33

0,07

0,03

0,40

-

3,009

Северо-Ставропольское

98,3

0,03

0,1

0,04

0,02

0,13

-

0,11

Газоконденсатные:









Вуктыльское

74,8

8,7

3,90

1,80

6,40

0,10

-

4,30

Газлинское

93,0

3,2

0,90

0,47

0,13

0,10

-

2,20

Оренбургское

84,8

4,5

1,40

0,30

1,50

1,15

35,0

5,00

Астраханское

47,48

1,92

0,93

0,56

3,08

21,55

21,5

1,98

Попутные газы:









Ромашкинское

39,0

20,0

18,5

6,2

4,7

0,1

-

11,5

Туймазинское

41,0

21,0

17,4

6,8

4,6

0,1

2,0

7,1

Жизновское

82,0

6,0

3,0

3,5

1,0

5,0

-

1,5

Небит-Дагское

85,7

4,0

3,5

2,0

1,4

2,09

0,01

1,3

Сызранское

31,9

23,9

5,9

2,7

0,8

1,6

1,70

31,5

Лирхановское

30,1

20,2

23,6

10,6

4,8

1,5

2,40

6,8



Природные газы широко используются как бытовое и промышленное топливо, служат ценнейшим сырьём для химической и нефтехимической промышленности. Сжиженные нефтяные газы используют в качестве растворителей для извлечения остаточной нефти из пласта.

Жидкие алканы. Содержание жидких алканов в зависимости от месторождения нефти колеблется от 10 до 70 %. Наиболее богаты ими мангышлакские, сибирские, татарские, башкирские нефти. При фракционной разгонке эти углеводороды попадают в бензиновый (С510) и керосиновый (С1116) дистилляты. В настоящее время в нефтях найдены все возможные изомеры пентана, гексана и гептана.

Обычно нефть содержит, главным образом, два-четыре десятка индивидуальных нормальных и изомерных алканов, остальные присутствуют в незначительных количествах.

Наиболее характерно содержание алканов нормального и слаборазветвлённого строения. Причём из последних наиболее часто встречаются метилзамещённые.

В табл. 5 приведены усреднённые данные о содержании индивидуальных алканов в бензиновых фракциях нефтей.

Из 18 изомеров октана обнаружено 17. Из 35 возможных изомеров нонана обнаружено 24.

Декан и его десять изомеров выделены, а большая часть обнаружены спектроскопическим методом.

Из углеводородов С1116 найдены ундекан, додекан, три- и тетрадекан, пентадекан и гексадекан.

Таблица 5

Относительное содержание алкановых углеводородов

во фракциях различных нефтей

Углеводороды

Среднее содержание во фракции, % от суммы алканов

для нефтей СНГ

для зарубежных нефтей

Фракция 60-95 0С

н-гексан

23,0

35,9

2-метилпентан

14,9

14,0

3-метилпентан

12,0

12,0

2,2-диметилпентан

3,3

1,5

2,4-диметилпентан

4,0

3,5

2,3-диметилпентан

8,8

2,6

3,3-диметилпентан

1,7

-

2-метилгексан

14,0

20,0

3-метилгексан

14,9

10,5

3-этилпентан

3,4

-

Фракция 95-122 0С

н-гептан

52,6

49,2

2,2-диметилгексан

1,1

5,7

2,3-диметилгексан

4,0

11,8

2,4-диметилгексан

4,7

5,1

2-метилгептан

23,8

-

3-метилгептан

8,1

-

4-метилгептан

5,7

28,2


В некоторых нефтях обнаружены изопреноидные углеводороды -разветвлённые алканы с правильным чередованием метильных заместителей в цепи через три метиленовые группы:

Содержание их в различных нефтях составляет до 9 %.

Изопреноидные углеводороды представляют особенный интерес для геохимии нефти, поскольку обладают специфической структурой, характерной для биохимических компонентов. Особенности их строения и высокая концентрация в различных нефтях свидетельствуют в пользу их биогенной природы.

При изучении распределения в нефтях нормальных алканов и алканов изостроения обнаружены закономерности, связанные с типом нефти. В нефтях метанового типа преобладают нормальные алканы (до 50 %). В нефтях нафтенового типа содержатся преимущественно изоалканы (до 75 % и более). Они могли образоваться в нефтях из фитола - ненасыщенного алифатического спирта растительного происхождения, который является составной частью хлорофилла.


Так как нефти метанового типа относятся к старым нефтям, преобладание в них алканов нормального строения объясняют протеканием реакций отщепления боковых цепей у углеводородов изостроения. Преимущественное содержание изоалканов в нафтеновых нефтях свидетельствует, что они относятся к молодым, не претерпевшим ещё значительных превращений.

Жидкие алканы имеют большое значение в жидких топливах. Установлено, что нормальные алканы являются носителями детонирующих свойств, в результате чего их присутствие в бензинах нежелательно.

Напротив, они желательны в дизельном топливе, т. к. с увеличением длины цепи повышается так называемое цетановое число, которое характеризует способность дизельного топлива к воспламенению.

Алканы разветвлённого строения придают бензинам антидетонационные свойства, характеризуемые октановым числом.

Жидкие алканы, входя в состав бензина, керосина и других продуктов переработки нефти, используют в первую очередь как топлива. Значительное количество нормальных алканов используют для получения синтетических жирных кислот, спиртов и поверхностно-активных веществ. Кроме того, они являются сырьём для микробиологической промышленности, производящей белково-витаминные концентраты.

Твёрдые алканы. Твёрдые алканы присутствуют во всех нефтях. Для всех твёрдых алканов укрепилось техническое название “парафины”. Парафинов в нефтях содержится мало (0,1-5%). Однако встречаются высокопарафинистые нефти с содержанием 7-27% твёрдых парафинов.

Основная их масса содержится в мазуте, при перегонке которого углеводороды с числом углеродных атомов от 17 до 35 попадают в масляные дистилляты, а С3655 остаются в гудроне. По химическому составу углеводороды, выделенные из масляных фракций, составляют более 75% нормальных алканов и небольшие количества циклоалканов и разветвлённых углеводородов. Они имеют температуру плавления 45-54 0С, температуру кипения до 550 0С, плотность 0,860-0,940 и молекулярную массу 300-500. Твёрдые углеводороды с числом углеродных атомов от 36 до 55 носят название церезины. В состав церезинов входят алканы нормального и изостроения, которые могут содержать в молекуле циклоалкановые и ароматические структуры. Церезины имеют температуру плавления 65-88 0С, температуру кипения выше 600 0С, молекулярную массу 500-750. По внешнему виду похожи на воск.

Парафины легко кристаллизуются в виде пластинок и пластинчатых лент. Церезины же кристаллизуются в виде мелких игл, поэтому они не образуют прочных застывающих систем, как парафины.

В нефти парафины находятся в растворённом и взвешенном состоянии. На холоде растворимость их в нефти и нефтяных фракциях невелика, но при нагревании около 40 0С парафины неограниченно растворяются в них. Так как в недрах Земли повышенная температура, то в нефтях парафины находятся в растворённом состоянии, выделяясь из них в виде твёрдой фазы при подъёме нефти на поверхность. Поэтому при содержании их в нефти в пределах 1,5-2 % парафины отлагаются в скважинах и промысловых нефтесборных трубопроводах, затрудняя эксплуатацию скважин и транспорт нефти.


Парафины и церезины имеют разнообразное применение в химической промышленности, в производстве вазелина, в пропитке древесины, аппретировании тканей, в качестве изолирующего материала в электро- и радиотехнике.

Парафины применяют в качестве загустителя в производстве пластических смазок. Особенно большое значение они имеют, также как и жидкие алканы, для производства синтетических жирных кислот и спиртов.


2.3. Циклоалканы


Циклоалканы или цикланы – углеводороды, содержащие в молекуле циклы (кольца), построенные из атомов углерода (карбоциклические соединения), связанные между собой σ-связью. Из рассмотренной ранее классификации (см. с. 17 ) следует, что цикланы входят в состав алициклических соединений. Общая формула циклоалканов CnH2n. Следовательно, молекулы цикланов, не имеющие заместителей, состоят из связанных между собой и замкнутых в кольца групп СН2 (метиленовая группа); отсюда и другое их название – полиметиленовые соединения.

В технической литературе (в том числе и в нефтяной) циклоалканы называют нафтенами. Последнее название им дал В.В. Марковников, впервые открывший эти углеводороды в 1833 году в бакинских нефтях.

Циклоалканы по числу циклов в молекуле подразделяются на моноцикланы (общая формула СnН2n), бицикланы (СnН2n-2) и полицикланы (СnН2n-4, СnН2n-6 и т.д.).


2.3.1. Номенклатура и изомерия


1. Моноцикланы.

Название циклоалканов образуе

тся путём добавления приставки цикло- к названию соответствующего линейного алкана с тем же числом атомов углерода:

Замещённые циклоалканы называют и нумеруют так же, как и их ациклические (нециклические аналоги):

Для удобства циклоалканы часто изображают в виде геометрических фигур. При этом подразумевается, что во всех углах фигуры находятся атомы углерода, а все свободные валентности заняты атомами водорода:



Для циклоалканов возможны следующие виды изомерии:

а) Изомерия, связанная с размером цикла:

б) Изомерия, зависящая от положения заместителей в цикле:

в) Изомерия боковых цепей

г) Изомерия, связанная с расположением боковых цепей в пространстве - геометрическая (цис-, транс-) изомерия:


2. Бициклические алканы.

Когда 2 цикла имеют два общих соседних атома углерода, то они образуют конденсированную систему. Если общими для двух циклов являются несмежные атомы, возникает мостиковая система. Циклы, связанные простой связью, называют ансамблями циклов.

Цепи атомов или валентности, соединяющие узловые атомы молекулы, называют мостиками. Узловыми считаются наиболее замещённые атомы.

Конденсированные и мостиковые системы, состоящие только из двух циклов, называют как и алканы с тем же общим числом углеродных атомов, добавляя приставку “бицикло”. Число атомов углерода в каждом из трёх мостиков указывают в квадратных скобках между приставкой “бицикло” и названием углеводорода. Цифры располагают в порядке уменьшения и отделяют друг от друга точкой.