Файл: В юридической деятельности.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 1155

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1. Понятие информационных технологий. Терминология и объект информатики.

2. Количественная мера информации.

3. Понятие энтропии.

4. Современные информационные технологии в деятельности МВД России.

ОСНОВНЫЕ ВОПРОСЫ:

1. Информационные процессы и их особенности.

2. Кодирование информации.

Преимущества цифровой передачи видеоданныхКроме очевидных преимуществ формата, сам способ формирования цифрового изображения также несет в себе существенные преимущества. Цифровой сигнал не ослабляется при передаче на расстояние, как аналоговый сигнал. Поэтому если он принимается вообще, то принимается без искажений. Цифровой сигнал не подвержен помехам, характерным для работы нецифрового оборудования, таким как тени, «туман» или «снег». Передается же цифровой сигнал в компрессированном виде, что намного сужает требуемую полосу пропускания канала. В цифровом телевидении применяется схема компрессии MPEG-2 – та же, что и на DVD.Любая компрессия – это компромисс. Самое высокое качество у некомпрессированного цифрового видео, но для этого необходимо передавать невероятное количество данных. Такую пропускную способность можно обеспечить только в локальной сети. Чтобы передавать цифровой сигнал по существующим каналам, изображение с разрешением примерно вчетверо выше по сравнению с обычным нецифровым компрессируется в соотношении 77:1. «Чудо компрессии» позволяет не только передавать в эфир превосходное изображение. Благодаря запасу полосы пропускания, появляется возможность передавать цифровое аудио 7.1, то есть настоящий окутывающий звук (surround sound).Важнейшим компонентом HDTV служит совсем крошечная деталь – скромный пиксель. В аналоговом телевидении элементы изображения, из которых состоит красная, зеленая и синяя компоненты, представляют собой вертикальные прямоугольники. В HDTV они квадратные, как на компьютерных мониторах, и более, чем в четверо меньше пикселов аналогового ТВ, так что мелкие детали получаются намного четче, что позволяет разглядеть каждую пору на коже кинозвезды. 2. Информационные кросс - технологииК данному классу отнесены технологии пользователя, ориентированные на следующие (или аналогичные) виды преобразования информации:• распознавания символов;• звук-текст;• текст-звук;• автоматический перевод. Оптическое распознавание символов (OCR)Когда страница текста отсканирована в ПК, она представлена в виде состоящего из пикселей растрового изображения. Такой формат не воспринимается компьютером как текст, а как изображение текста и текстовые редакторы не способны к обработке подобных изображений. Чтобы превра­тить группы пикселей в доступные для редактирования символы и слова, изображение должно пройти сложный процесс, известный как оптическое распознавание символов (optical character recognition – OCR).В то время как переход от символьной информации к графической (растровой) достаточно элементарен и без труда осуществляется, например при выводе текста на экран или печать, обратный переход (от печатного текста к текстовому файлу в машинном коде) весьма затруднителен. Именно в связи с этим для ввода информации в ЭВМ исстари использовались перфоленты, перфокарты и др. промежуточные носители, а не исходные «бумажные» документы, что было бы гораздо удобнее. «В защиту» перфокарт скажем здесь, что наиболее «продвинутые» устройства перфорации делали надпечатку на карте для проверки ее содержания.Первые шаги в области оптического распознавания символов были предприняты в конце 50-х гг. XX в. Принципы распознавания, заложенные в то время, используются в большинстве систем OCR: сравнить изображение с имеющимися эталонами и выбрать наиболее подходящий.В середине 70-х гг. была предложена технология для ввода информации в ЭВМ, заключающаяся в следующем: исходный документ печатается на бланке с помощью пишущей машинки, оборудованной стилизованнымшрифтом (каждый символ комбинируется из ограниченного числа вертикальных, горизонтальных, наклонных черточек, подобно тому, как это делаем мы и сейчас, нанося на почтовый конверт цифры индекса); полученный «машинный документ» считывается оптоэлектрическим устройством (собственно OCR), которое кодирует каждый символ и определяет его позицию на листе; информация переносится в память ЭВМ, образуя электронный образ документа или документ во внутреннем представлении. Очевидно, что по сравнению с перфолентами (перфокартами) OCR-документ лучше хотя бы тем, что он без особого труда может быть прочитан и проверен человеком и, вообще, представляет собой «твердую копию» соответствующего введенного документа. Было разработано несколько модификаций подобных шрифтов, разной степени «удобочитаемости» (OCR A (рис 1), OCR В (рис 2) и пр.). Рис. 1. OCR – A Рис. 2. OCR – BОчевидно также, что считывающее устройство представляет собой сканер, хотя и специализированный(считывание стилизованных символов), но интеллектуальный(распознавание их).OCR – технология в данном виде просуществовала недолго и в настоящее время приобрела следующий вид: считывание исходного документа осуществляется универсальным сканером, осуществляющим создание растрового образа и запись его в оперативную память и/или в файл; функции распознавания полностью возлагаются на программные продукты, которые, естественно, получили название OCR-software. Исследования в этом направлении начались в конце 1950–х гг., и с тех пор технологии непрерывно совершенствовались. В 1970-х гг. и в начале 1980-х гг. программное обеспечение оптического распознавания символов все еще обладало очень ограниченными возможностями и могло работать только с некоторыми типами и размерами шрифтов. В настоящее время программное обеспечение оптического распознавания символов намного более интеллектуально и может распознать фактически все шрифты, даже при невысоком качестве изображения документа.Основные методы оптического распознаванияОдин из самых ранних методов оптического распознавания символов базировался на сопоставлении матриц или сравнении с образцом букв. Большинство шрифтов имеют формат Times, Courier или Helvetica и размер от 10 до 14 пунктов (точек). Программы оптического распознавания символов, которые используют метод сопоставления с образцом, имеют точечные рисунки для каждого символа каждого размера и шрифта.Сравнивая базу данных точечных рисунков с рисунками отсканированных символов, программа пытается их распознавать. Эта ранняя система успешно работала только с непропорциональными шрифтами (подобно Courier), где символы в тексте хорошо отделены друг от друга. Сложные документы с различными шрифтами оказываются уже вне возможностей таких программ. Рис. 3. Разные подходы к распознаваниюВыделение признаков было следующим шагом в развитии оптического распознавания символов. При этом распознавание символов основывается на идентификации их универсальных особенностей, чтобы сделать распознавание символов независимым от шрифтов. Если бы все символы могли быть идентифицированы, используя правила, по которым элементы букв (например, окружности и линии) присоединяются друг к другу, то индивидуальные символы могли быть описаны незави­симо от их шрифта. Например: символ «а» может быть представлен как состоящий из окружности в центре снизу, прямой линии справа и дуги окружности сверху в центре (рис. 3).Если отсканированный символ имеет эти особенности, он может быть правильно идентифицирован как символ «а» программой оптического распознавания.Выделение признаков было шагом вперед сравнительно с соответствием матриц, но практические результаты оказались весьма чувствительными к качеству печати. Дополнительные пометки на странице или пятна на бумаге существенно снижали точность обработки. Устранение такого «шума» само по себе стало целой областью исследований, пытающейся определить, какие биты печати не являются частью индивидуальных символов. Если шум идентифицирован, достоверные символьные фрагменты могут тогда быть объединены в наиболее вероятные формы символа.Некоторые программы сначала используют сопоставление с образцом и/или метод выделения признаков для того, чтобы распознать столько символов, сколько возможно, а затем уточняют результат, используя грамматическую проверку правильности написания для восстановления нераспознанных символов. Например, если программа оптического распознавания символов неспособна распознать символ «е» в слове «th



Достоинства векторной графики

Самая сильная сторона векторной графики в том, что она использует все преимущества разрешающей способности любого устройства вывода. Это позволяет изменять размеры векторного рисунка без потери его качества. Векторные команды просто сообщают устройству вывода, что необходимо нарисовать объект заданного размера, используя столько точек сколько возможно. Другими словами, чем больше точек сможет использовать устройство вывода для создания объекта, тем лучше он будет выглядеть. Растровый формат файла точно определяет, сколько необходимо создать пикселов и это количество изменяется вместе с разрешающей способностью устройства вывода. Вместо этого происходит одно из двух либо при увеличении разрешающей способности, размер растровой окружности уменьшается, так как уменьшается размер точки составляющих пиксел; либо размер окружности остается одинаковым, но принтеры с высокой разрешающей способностью используют больше точек для любого пиксела. Векторная графика обладает еще одним важным преимуществом, здесь можно редактировать отдельные части рисунка не оказывая влияния на остальные, например, если нужно сделать больше или меньше только один объект на некотором изображении, необходимо просто выбрать его и осуществить задуманное. Объекты на рисунке могут перекрываться без всякого воздействия друг на друга. Векторное изображение, не содержащее растровых объектов, занимает относительно не большое место в памяти компьютера. Даже очень детализированные векторные рисунки, состоящие из 1000 объектов, редко превышают несколько сотен килобайт.
Недостатки векторной графики

Природа избегает прямых линий. К сожалению, они являются основными компонентами векторных рисунков. До недавнего времени это означало, что уделом векторной графики были изображения, которые никогда не старались выглядеть естественно, например, двухмерные чертежи и круговые диаграммы, созданные специальными программами САПР, двух и трех мерные технические иллюстрации, стилизованные рисунки и значки, состоящие из прямых линий и областей, закрашенных однотонным цветом. Векторные рисунки состоят из различных команд посылаемых от компьютера к устройствам вывода (принтеру). Принтеры содержат свои собственные микропроцессоры, которые интерпретируют эти команды и пытаются их перевести в точки на листе бумаги. Иногда из–за проблем связи между двумя процессорами принтер не может распечатать отдельные детали рисунков. В зависимости от типов принтера случаются проблемы, и у вас может оказаться чистый лист бумаги, частично напечатанный рисунок или сообщение об ошибке.


Применение векторной графики

Успехи компьютерных технологий, достигнутые в последние годы, не оставляют места сомнениям при выборе способов получения, хранения и переработки данных о сложных комплексных трехмерных объектах, таких, например, как памятники архитектуры и археологии, объекты спелеологии и т. д. Несомненно, что применение компьютеризации для этих целей – дело не далекого будущего, а уже настоящего времени. Последнее, конечно, в большой мере зависит от количества денежных средств, вкладываемых с этой целью.

Наука и инженерия

Системы CAD/CAM используются сегодня в различных областях инженерной конструкторской деятельности от проектирования микросхем до создания самолетов. Ведущие инженерные и производственные компании, такие как Boeing, в конечном счете двигаются к полностью цифровому представлению конструкции самолетов.

Архитектура является другой важной областью применения для CAD/CAM и совсем недавно созданных систем класса walkthrough (прогулки вокруг проектируемого объекта с целью его изучения и оценки). Такие фирмы, как McDonald's, уже с 1987 года используют машинную графику для архитектурного дизайна, размещения посадочных мест, планирования помещений и проектирования кухонного оборудования. Есть ряд эффектных применений векторной графики в области проектирования стадионов и дизайна спортивного инвентаря, новый парк в Балтиморе (Baltimore Orioles'Camden Yards Park).

Медицина стала весьма привлекательной сферой применения компьютерной графики, например: автоматизированное проектирование инплантантов, особенно для костей и суставов, позволяет минимизировать необходимость внесения изменений в течение операции, что сокращает время пребывания на операционном столе (очень желательный результат как для пациента, так и врача). Анатомические векторные модели также используются в медицинских исследованиях и в хирургической практике.

Научные лаборатории продолжают генерировать новые идеи в области визуализации. Задача сообщества компьютерной графики состоит в создании удобных инструментов и эффективных технологий, позволяющих пользователям продолжать научные изыскания за границей возможного и безопасного эксперимента. Например ,проект виртуального туннеля NASA Ames Research Center переносит аэродинамические данные в мир виртуальной реальности

, интерес к которой значительно вырос в девяностые годы. NASA Ames было одним из пионеров в использовании и развитии технологий погружения людей в мнимую реальность. Специалисты NASA занимались разработкой специальных шлемов и дисплеев, трехмерных аудиоустройств, уникальных устройств ввода для оператора и созданием соответствующего программного обеспечения. Возник ряд компаний, занимающихся виртуальной реальностью, например: Fakespace, Cristal River Engineering и Telepresence Research.

Все эти инженерные и научные применения убеждают, что индустрия машинной графики начала обеспечивать пользователей новой технологией, при которой они действительно уже не заботятся о том, как формируется изображение – им важен результат.

Искусство, развлечения и бизнес

Согласно проведенным мною исследованиям, вплоть до начала девяностых годов доходы от использования векторной графики в научно–инженерных приложениях были значительно выше, чем доходы в области бизнеса и других областях, непосредственно не связанных с наукой. Однако в 1991 году доходы были поделены в равной степени, а баланс теперь устойчиво сдвигается в сторону нетехнических приложений. Я считаю, что к 1998 году около двух третей всех доходов от компьютерной графики поступит именно из нетехнических областей применения. Некоторые из этих применений получили настолько широкое распространение, что возникли споры, насколько они действительно являются машинной графикой. Например, мультимедиа воспринимают отдельно от машинной графики, что, однако, не так, вследствие явного доминирования графических изображений.

"Классическая" векторная графика до сих пор используется в различных приложениях бизнеса, включая разработку концепции, тестирование и создание новых продуктов, но бизнес также стал лидирующим потребителем систем мультимедиа, например, в обучении или маркетинговых презентациях. Графика все шире проникает в бизнес – сегодня фактически нет документов, созданных без использования какого–либо графического элемента. Соответствующее программное обеспечение специально разработано, чтобы позволить пользователям сконцентрироваться больше на содержании, а не на графическом исполнении.

Грядет всплеск использования графики в анимации, особенно в области индустрии развлечений. Кинофильм Стивена Спилберга "Парк Юрского периода" установил в 1993 году новый стандарт фотореализма в графике. Этот фильм не единичный случай применения 3D графики в кино, и Голливуд расширяет сферу использования специальных эффектов машинной графики, только в 1994 году выпустив несколько высокохудожественных фильмов: "The Lion King", "The Mask", "True Lies" и "Forrest Gump".


Виртуальная реальность находит свою нишу в индустрии развлечений и видеоиграх. Число виртуальных галерей и развлекательных парков быстро растет. По моим оценкам 30% (то есть 144 млрд. долл.) всего дохода от использования систем виртуальной реальности было получено в прошлом году именно от разного рода игр, и доходы от этих применений будут расти.

Лаборатория Media Lab МТИ является уникальным исследовательским центром разработки совершенных систем взаимодействия "человек–компьютер". Например, система News в проекте Future использует последние достижения в области графики, реконструкции звука и изображений, а также моделировании различных объектов для представления новых результатов исследований и их презентации в виде соответствующих текстов, графики, аудио и видео.
Векторная графика в Интернете

Ни для кого не секрет – сегодня, чтобы не затеряться на просторах Internet и привлечь к себе внимание пользователей, никак нельзя обойтись без графического оформления Web–страниц и узлов. Однако здесь на пути разработчиков возникает проблема: графические технологии для Web не поспевают в своем развитии за другими технологиями, и возможности в данной области остаются весьма ограниченными.

В самом деле, два наиболее популярных в настоящее время графических формата Internet – GIF и JPEG – являются уже довольно старыми. Конечно, неудачными назвать их никак нельзя, ведь сам факт столь длительного их существования – свидетельство этому. Но, с другой стороны, вряд ли можно поспорить с тем, что возможности данных форматов не отвечают современным требованиям в области графики. Так, формат GIF поддерживает только 256–битовый цвет, а в случае применения формата JPEG при большой степени сжатия существенно снижается качество изображения. Кроме того, еще в 1995 г. возможность свободного использования GIF оказалась под вопросом, когда компании Unisys, которой принадлежит реализованный в этом формате алгоритм сжатия LZW, и CompuServe, разработавшей сам формат, собрались взимать лицензионные отчисления с каждой программы, использующей его.

В сложившейся ситуации группа независимых разработчиков Internet приняла решение о разработке формата, который соответствовал бы или даже превосходил по своим возможностям GIF, но был при этом простым в создании и полностью мобильным. Новый формат получил название Portable Network Graphics (PNG) и был одобрен консорциумом W3C в 1996 г.

Формат PNG поддерживает 48–битовые цветные и 16–битовые черно–белые изображения и обеспечивает более быструю их загрузку, чем формат GIF. Он также включает в себя немало дополнительных возможностей, например альфа–каналы (alpha channel), позволяющие устанавливать уровень прозрачности для каждого пиксела, и гамма–коррекцию. Механизм сжатия изображения в PNG реализован на базе фильтров, позволяющих оптимизировать данные перед сжатием, и алгоритма LZ77, применяемого в ZIP–архиваторах.


Однако, несмотря на ряд преимуществ PNG пока не удалось стать реальной альтернативой GIF и JPEG. Виной тому было отсутствие поддержки со стороны разработчиков браузеров. Правда, к сегодняшнему дню в данном направлении произошли существенные сдвиги: начиная с Internet Explorer 4.0 и Netscape Navigator 4.04 поддержка PNG реализована непосредственно в броузерах; до этого она обеспечивалась за счет встраиваемых компонентов. По мнению ряда специалистов, вскоре можно ожидать широкого распространения нового формата (после массового перехода пользователей на последние версии популярных браузеров).

Следующим по популярности растровым форматом для Web можно назвать FlashPix, разработанный группой компаний: Kodak, Hewlett–Packard, Microsoft и Live Picture. Он базируется на принципах JPEG–компрессии, но содержит ряд усовершенствований, которые позволяют уменьшить степень искажения изображений. Основное преимущество данного формата – многоуровневая организация файла. В начале загружается изображение с самым низким разрешением и впоследствии, по мере надобности, подкачивается более качественная версия. Microsoft избрала модификацию этого формата в качестве основы для своего растрового редактора PhotoDraw 2000, так что в недалеком будущем следует ожидать поддержки его браузером Internet Explorer.

Интересной разработкой обладает компания Iterated Systems, которая создала свой формат на основе фрактальной компрессии (Fractal Image Format, FIF), а также выпустила программу преобразования основных форматов в FIF и плагины для просмотра сжатых по фрактальному алгоритму изображений в основных браузерах.

К сожалению, фрактальная компрессия, как и JPEG, имеет существенный недостаток: согласно этим алгоритмам, для анализа изображение перед сжатием разбивается на отдельные блоки, что затрудняет его постепенную прорисовку при загрузке с Web–сайта.

Наиболее перспективные – растровые форматы, основанные на алгоритмах wavelet–сжатия. В этой области ведут разработки практически все компании, которые занимаются созданием графических форматов. Самым многообещаемым является, безусловно, JPEG 2000. Работа над ним еще не завершена, но заявленные параметры впечатляют: 256 каналов цвета, что позволит формату работать с любым цветовым пространством и поддерживать множество альфа–каналов; встраивание ICC–профилей; неограниченное поле для метаданных. Но главное преимущество wavelet–технологии – потоковость. Wavelet–поток можно прервать в любое время, при этом изображение все равно воспроизводится, только качество его будет зависеть от количества загруженных данных.