Файл: Методические указания к выполнению контрольной работы для студентов заочной формы обучения.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.01.2024

Просмотров: 145

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
x,y. Он может быть рассчитан по формуле: . Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: .

Область допустимых значений линейного коэффициента парной корреляции от –1 до +1. Знак коэффициента корреляции указывает направление связи. Если rx,y>0, то связь прямая; если rx,y<0, то связь обратная.

Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице rx,y =1, то связь между признаками функциональная линейная. Если признаки х и y линейно независимы, то rx,y близок к 0.

Для расчета rx,y можно использовать также таблицу 1.

Таблица 1


N наблюдения

xi


yi

xi ∙yi





1

x1

y1

x1·y1






2

x2

y2

x2·y2






...
















n

xn

yn

xn·yn






Сумма по столбцу

x

y

x·y





Среднее значение












Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации – R2yx:

,

где 2 – объясненная уравнением регрессии дисперсия y;

2- остаточная (необъясненная уравнением регрессии) дисперсия y;

2y - общая (полная) дисперсия y.

Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y, объясняемую регрессией (а, следовательно, и фактором х), в общей вариации (дисперсии) y. Коэффициент детерминации R2yx принимает значения от 0 до 1. Соответственно величина 1-R2yx характеризует долю дисперсии y, вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.

При парной линейной регрессии R2yx=r2yx.

Оценка статистической значимости параметров уравнения регрессии.

С помощью МНК мы получили лишь оценки параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y). Если оценку параметров произвести по данным другого статистического наблюдения (другому набору значений x и y), то получим другие численные значения , .

Мы предполагаем, что все эти наборы значений x и y извлечены из одной и той же генеральной совокупности. Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.

В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности. В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.

Найденное по данным наблюдений значение

t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике). Табличное значение определяется в зависимости от уровня значимости () и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.

Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.

Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля, например, при уровне значимости =0,05.

Для параметра b критерий проверки имеет вид:

,

где - оценка коэффициента регрессии, полученная по наблюдаемым данным;

– стандартная ошибка коэффициента регрессии.

Для линейного парного уравнения регрессии стандартная ошибка коэффициента вычисляется по формуле:

.
Числитель в этой формуле может быть рассчитан через коэффициент детерминации и общую дисперсию признака-результата: .

Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид:

,

где - оценка параметра регрессии, полученная по наблюдаемым данным;

– стандартная ошибка параметра a.

Для линейного парного уравнения регрессии:

.

Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий:


, где ryx - оценка коэффициента корреляции, полученная по наблюдаемым данным; r – стандартная ошибка коэффициента корреляции ryx.

Для линейного парного уравнения регрессии:

.

В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: t(b=0)=t(r=0).
Прогноз ожидаемого значения результативного признака y по линейному парному уравнению регрессии.

Пусть требуется оценить значение признака-результата для заданного значения признака-фактора (хр). Прогнозируемое значение признака-результата c доверительной вероятностью равной (1-) принадлежит интервалу прогноза:

( -t·p; +t·p),

где - точечный прогноз;

t – коэффициент доверия, определяемый по таблицам распределения Стьюдента в зависимости от уровня значимости  и числа степеней свободы (n-2);

p- средняя ошибка прогноза.

Точечный прогноз рассчитывается по линейному уравнению регрессии, как: .

Средняя ошибка прогноза определяется по формуле:

.

Задание № 1

На основе данных, приведенных в Приложении 1 и соответствующих Вашему варианту (таблица 2), требуется:

  1. Рассчитать коэффициент линейной парной корреляции и построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (х), другой – результативного (y). Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.

  2. Определить теоретический коэффициент детерминации и остаточную (необъясненную уравнением регрессии) дисперсию. Сделать вывод.

  3. Оценить статистическую значимость уравнения регрессии в целом на пятипроцентном уровне с помощью F-критерия Фишера. Сделать вывод.

  4. Выполнить прогноз ожидаемого значения признака-результатаy при прогнозном значении признака-фактора х, составляющим 105% от среднего уровня х. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.


Таблица 2

Вариант

Номер начального наблюдения

Номер конечного наблюдения

Номер признаков из прил. 1

Вариант

Номер начального наблюдения

Номер конечного наблюдения

Номер признаков из прил. 1

1

2

3

4

5

6

7

8

01




50

1,2

51

26

75

1,3

02

1

50

3,4

52

26

75

4,5

03

2

51

1,3

53

27

76

1,4

04

2

51

4,5

54

27

76

2,5

05

3

52

1,4

55

28

77

1,5

06

3

52

2,5

56

28

77

2,3

07

4

53

1,5

57

29

78

1,2

08

4

53

2,3

58

29

78

3,4

09

5

54

1,2

59

30

79

1,3

10

5

54

3,4

60

30

79

4,5

11

6

55

1,3

61

31

80

1,4