Файл: Методические указания к выполнению контрольной работы для студентов заочной формы обучения.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.01.2024

Просмотров: 143

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Продолжение табл. 2

1

2

3

4

5

6

7

8

12

6

55

4,5

62

31

80

2,5

13

7

56

1,4

63

32

81

1,5

14

7

56

2,5

64

32

81

2,3

15

8

57

1,5

65

33

82

1,2

16

8

57

2,3

66

33

82

3,4

17

9

58

1,2

67

34

83

1,3

18

9

58

3,4

68

34

83

4,5

19

10

59

1,3

69

35

84

1,4

20

10

59

4,5

70

35

84

2,5

21

11

60

1,4

71

36

85

1,5

22

11

60

2,5

72

36

85

2,3

23

12

61

1,5

73

37

86

1,2

24

12

61

2,3

74

37

86

3,4

25

13

62

1,2

75

38

87

1,3

26

13

62

3,4

76

38

87

4,5

27

14

63

1,3

77

39

88

1,4

28

14

63

4,5

78

39

88

2,5

29

15

64

1,4

79

40

89

1,5

30

15

64

2,5

80

40

89

2,3

31

16

65

1,5

81

41

90

1,2

32

16

65

2,3

82

41

90

3,4

33

17

66

1,2

83

42

91

1,3

34

17

66

3,4

84

42

91

4,5

35

18

67

1,3

85

43

92

1,4

36

18

67

4,5

86

43

92

2,5

37

19

68

1,4

87

44

93

1,5

38

19

68

2,5

88

44

93

2,3

39

20

69

1,5

89

45

94

1,2

40

20

69

2,3

90

45

94

3,4

41

21

70

1,2

91

46

95

1,3

42

21

70

3,4

92

46

95

4,5

43

22

71

1,3

93

47

96

1,4

44

22

71

4,5

94

47

96

2,5

45

23

72

1,4

95

48

97

1,5

46

23

72

2,5

96

48

97

2,3

47

24

73

1,5

97

49

98

1,2

48

24

73

2,3

98

49

98

3,4


Окончание табл. 2

1

2

3

4

5

6

7

8

49

25

74

1,2

99

50

99

1,3

50

25

74

3,4

0

50

99

4,5


МНОЖЕСТВЕННЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, который в свою очередь включает 2 круга вопросов: отбор факторов и выбор уравнения регрессии.

Отбор факторов обычно осуществляется в два этапа:

1) теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;

2) количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции):

ry,yry,x1ryx2 .... ry,xm

rx1,yrx1,x2rx2x2 .... rx2,xm

......

rxm,yrxm,x1rxm,x2 .... rxm,xm

где ry,xj– линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками yи хj j=1;m, m -число факторов.

rxj,xk– линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками хjи хk j,k=1;m.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов).



2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).

3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность - тесная линейная связь между факторами.

Мультиколлинеарность может привести к нежелательным последствиям:

1) оценки параметров становятся ненадежными. Они обнаруживают большие стандартные ошибки. С изменением объема наблюдений оценки меняются (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;

3) становится невозможным определить изолированное влияние факторов на результативный показатель.

Мультиколлинеарность имеет место, если определитель матрицы межфакторной корреляции близок к нулю:


.

Если же определитель матрицы межфакторной корреляции близок к единице, то мультколлинеарности нет.Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них – исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации -R2y(x1...xm) снизится несущественно).
Определение факторов, ответственных за мультиколлинеарность, может быть основано на анализе матрицы межфакторной корреляции. При этом определяют пару признаков-факторов, которые сильнее всего связаны между собой (коэффициент линейной парной корреляции максимален по модулю). Из этой пары в наибольшей степени ответственным за мультиколлинеарность будет тот признак, который теснее связан с другими факторами модели (имеет более высокие по модулю значения коэффициентов парной линейной корреляции).
Еще один способ определения факторов, ответственных за мультиколлинеарность основан на вычислении коэффициентов множественной детерминации (R2xj(x1,...,xj-1,xj+1,...,xm)), показывающего зависимость фактора xj от других факторов модели x1,...,xj-1, xj+1,...,xm. Чем ближе значение коэффициента множественной детерминации к единице, тем больше ответственность за мультиколлинеарность фактора, выступающего в роли зависимой переменной. Сравнивая между собой коэффициенты множественной детерминации для различных факторов можно проранжировать переменные по степени ответственности за мультиколлинеарность.

При выборе формы уравнения множественной регрессии предпочтение отдается линейной функции:

yi=a+b1·x1i+ b2·x2i+...+ bm·xmi+ui

в виду четкой интерпретации параметров.

Данное уравнение регрессии называют уравнением регрессии в естественном (натуральном) масштабе. Коэффициент регрессии
bjпри факторе хjназывают условно-чистым коэффициентом регрессии. Он измеряет среднее по совокупности отклонение признака-результата от его средней величины при отклонении признака-фактора хj на единицу, при условии, что все прочие факторы модели не изменяются (зафиксированы на своих среднихуровнях).

Если не делать предположения о значениях прочих факторов, входящих в модель, то это означало бы, что каждый из них при изменении хj также изменялся бы (так как факторы связаны между собой), и своими изменениями оказывали бы влияние на признак-результат.

Расчет параметров уравнения линейной множественной регрессии


Параметры уравнения множественной регрессии можно оценить методом наименьших квадратов, составив и решив систему нормальных линейных уравнений.

Кроме того, для линейной множественной регрессии существует другой способ реализации МНК при оценке параметров - через -коэффициенты (через параметры уравнения регрессии в стандартных масштабах).

Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:

, j=1;m,

где хji- значение переменной хji в i-ом наблюдении.

.

Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение . Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:

.

Для оценки -коэффциентов применим МНК. При этом система нормальных уравнений будет иметь вид:

rx1y=1+rx1x2∙2+…+ rx1xmm

rx2y= rx2x1∙1+2+…+ rx2xm∙m



rxmy=