Файл: Новиков Д.К. Медицинская микробиология.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.03.2024

Просмотров: 1605

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

ентную клетку, может диссоциировать с образованием чистого фактора переноса – RTF-фактора и неконъюгативной плазмиды, несущей гены лекарственной устойчивости (r-гены). Значительное число r-генов представляет собой транспозоны (см. ниже), которые могут перемещаться от плазмиды-носителя в другие репликоны. В одном r-гене может содержаться несколько транспозонов, кодирующих устойчивость к разным антибиотикам. Множественная устойчивость к антибиотикам может быть передана от клетки к клетке в результате трансдукции (перенос r-генов трансдуцирующим бактериофагом), поскольку, например, у кокков R-плазмида нетрансмиссивна, или в результате конъюгации, т.к. плазмида может иметь tra-оперон. Передача r-генов осуществляется непостоянно, поскольку бактериальные клетки могут синтезировать репрессоры, блокирующие передачу r-генов.

Плазмиды, участвующие в формировании патогенных свойств бактерий –

Ent, Hly, K и др. Ent-плазмиды, а также некоторые бактериофаги в состоянии лизогении содержат в своем составе tox-гены, кодирующие образование энтеротоксинов у энтеробактерий. Плазмида К88 кодирует выработку вещества капсулы бактерий, ее антигенов. Плазмида Hly контролирует синтез гемолизинов у энтеропатогенных микробов и стрептококков, особенно если она связана с плазмидой К88. Sal-плазмида (трансмиссивная) выявлена у псевдомонад, детерминирует использование бактериями салицилатов благодаря выработке особого фермента.

Плазмиды биодеградации. Эти плазмиды несут информацию, необходимую для использования некоторых органических соединений бактериями в качестве источников углерода и энергии. Например, плазмиды биодеградации кодируют ферменты, отвечающие за утилизацию ряда сахаров (лактозы, сахарозы и др.) и образование протеолитических ферментов.

Умеренные фаги. Факторами, несущими дополнительную, важную для бактериальной клетки, информацию и часто определяющими ее патогенность, являются умеренные фаги. По свойствам они во многом схожи с плазмидами бактерий. Встраиваясь в нуклеоид, такие фаги вызывают лизогенизацию бактерий с приобретением новых признаков. Это связано либо с приобретением генов, переносимых данными фагами от их предыдущих хозяев (бактерий-доноров), либо с началом экспрессии «молчащих» генов бактерий-реципиентов. В этом случае фаговая ДНК выступает в роли промотора. Такие микроорганизмы, например, приобретают способность к токсинообразованию (дифтерийные бактерии, некоторые клостридии и др.)

5.4.Инсерционные (Is) последовательности и транспозоны

Умикробных клеток есть еще 2 вида структурных компонентов ДНК: Isпоследовательности и транспозоны.

Они относятся к мигрирующим генетическим элементам и могут кодировать свой собственный перенос (транспозицию) от одного нуклеоида к другому или между нуклеоидом и плазмидами. Это обусловлено их способностью определять синтез ферментов транспозиции и рекомбинации – транспозаз.

Более просто устроены инсерционные последовательности (Is-элементы).

67


Is-элементы (от англ. insertion – вставка, sequence – последовательность) обладают своеобразными генетическими свойствами

Во-первых, они способны перемещаться по геному. При этом происходит репликация Is-элемента. Первичный экземпляр остается на прежнем месте, а копия встраивается в мишень. Места, куда встраиваются инсерционные последовательности, почти не обладают специфичностью. Функции, обеспечивающие способность к перемещению (транспозиции), закодированы в самом Is-элементе.

Во-вторых, транспозиция представляег собой редкое событие, которое происходит на порядок реже, чем спонтанные мутации.

В-третьих, в местах, смежных по отношению к инсерции, возникают делеции и инверсии бактериальных генов. Кроме этого, встроенная инсерция может либо активировать транскрипцию соседних генов, выступая в роли промотора, либо наоборот, ингибировать их.

Наконец, именно Is-элементы обеспечивают взаимодействие между нуклеоидом, плазмидами и эписомами (например – F-фактором).

В свободном состоянии Is-последовательности не обнаружены.

Транспозоны – это более сложно устроенные генетические элементы. Они состоят из 2500-20000 и более пар нуклеотидов. В отличие от инсерций, они могут быть в свободном состоянии в виде кольцевой молекулы. Кроме того, транспозоны могут перемещаться из хромосомы в плазмиды и наоборот, мигрируя с репликона на репликон. ДНК транспозонов окружена с обоих концов (фланкирована) последовательностями ДНК, напоминающими Is-элементы. Некоторые умеренные фаги (например, Mu-бактериофаг E.coli) устроены аналогично и по существу представляют собой гигантские транспозоны.

Транспозоны могут нести информацию о синтезе бактериальных токсинов и ферментов, модифицирующих антибиотики. Также они могут проникать в хромосому клеток животных или человека сходно с провирусами. Так как для интеграции в геном транспозоны не нуждаются в классической рекомбинации, а обладают собственной системой встраивания, то они могут широко горизонтально распространяться между различными видами бактерий.

5.5. Изменчивость микроорганизмов

Если наследственность отвечает за стабильность вида, то изменчивость определяет его способность приспосабливаться к постоянно меняющимся условиям среды. В процессе развития популяции бактерий появляются отдельные клетки, которые под влиянием внутренних и внешних факторов меняют свои признаки. Если эти изменения связаны с генотипом, то они передаются по наследству и могут быть «подхвачены» естественным отбором. Когда новые признаки обеспечивают селективное преимущество данной популяции в сравнении с другими, то они отбором закрепляются. Тем самым меняется генофонд вида и осуществляется процесс эволюции.

Различают 2 категории изменчивости: фенотипическую (ненаследственную, модификационную) и генотипическую (наследственную), к которой относят мутации, рекомбинации, диссоциации, а также процессы репарации.

68


5.6. Фенотипическая изменчивость

Данный тип изменчивости является ненаследуемым. В этом случае возникают различия между организмами, одинаковыми по генотипу. Причиной их является постоянное воздействие на клетку изменяющихся факторов внешней и внутренней среды.

Изменения проявлений какого-либо признака или группы признаков микроорганизма получили названия модификаций. Они находятся под контролем генома, но не сопровождаются изменениями первичной последовательности ДНК. Основу модификации составляют репрессия или индуцибельный синтез соответствующих ферментов.

Модификационная изменчивость может быть обусловлена и альтернативной экспрессией генов. Примером является образование различных типов адгезинов у гонококка, необходимых для его связывания со слизистой оболочкой уретры. Данные белки выполняют одну и ту же функцию, но отличаются по антигенным свойствам. Это происходит в процессе инфекции за счет включения «молчащего» гена и выключения предыдущего. При этом каждая бактериальная клетка синтезирует только один тип адгезина. «Включение» различных генов, запуск процесса транскрипции могут быть обусловлены и изменением положения промоторных областей по отношению к соответствующим структурным генам.

При культивировании бактерий основными факторами фенотипической изменчивости являются особенности состава питательной среды (рH, концентрация солей и т.п.) и изменение самих условий культивирования (влажности, температуры и т.д.).

Модификации представляют собой временные изменения; они поддерживаются, пока действует неблагоприятный фактор и обеспечивают выживаемость организма в неблагоприятных условиях. Примером такой изменчивости является образование L- форм бактерий. Они представляют собой микроорганизмы, лишенные клеточной стенки. Чаще это результат действия химиотерапевтических веществ (например, пенициллина). Без антибиотика происходит постепенный возврат к исходному состоянию.

Выделяют 2 вида модификационной изменчивости:

а) стабильная или длительная модификация. Она сохраняется в потомстве в течение нескольких поколений;

б) кратковременная модификация – при исчезновении действующего фактора изменения исчезают также.

Такая изменчивость позволяет микробным популяциям быстро адаптироваться к факторам окружающей среды.

5.7. Генотипическая изменчивость

5.7.1. Мутации

Мутации – изменения структуры ДНК генов, проявляющиеся наследственно закрепленным изменением какого-либо признака или признаков. В природе они могут

69


наступать спонтанно, без участия экспериментатора. Такие мутации относят к спонтанным. Они имеют свою причину, но не контролируются.

Индуцированные мутации – направленные изменения структуры ДНК, контролируемые экспериментатором.

Факторы вызывающие мутации называются мутагенами. Они могут быть химическим, физическими и биологическими.

Химические мутагены – соединения, способные изменять структуру генов, прямо взаимодействуя с ДНК клетки или реагируя с ферментами, контролирующими метаболизм нуклеиновых кислот. Известно огромное количество химических мутагенов – красители, галогены, соли металлов переходных валентностей (например – никеля), азотистый натрий, некоторые антибиотики и т.д.

Кфизическим мутагенам относятся такие факторы, как температура, гаммаизлучение, ультрафиолетовые лучи, ренгеновские лучи и т.д.

Кбиологическим мутагенам можно отнести действие бактериофагов, накопление продуктов метаболизма и т.п.

По величине мутации делятся на генные – изменения в пределах 1 гена; хромосомные – изменения более, чем в одном гене, и точковые – в паре оснований нуклеотидов, что приводит к изменению одного триплета.

В случае точковых мутаций вместо одной аминокислоты кодируется другая или образуется бессмысленный кодон, не кодирующий аминокислоты. Последние мутации называются нонсенс-мутациями. Возможны молчащие мутации (без изменения смысла). Они возникают вследствие вырожденности генетического кода; образовавшийся в результате мутирования триплет кодирует ту же самую аминокислоту, что и исходный триплет. Миссенс-мутации (мутации с изменением смысла) – это результат изменения последовательности ДНК, ведущий к появлению в белковой цепи иной аминокислоты. Образующийся измененный белок может быть как активным, так и неактивным в зависимости от размеров мутации. Мутации со сдвигом рамки чтения обусловлены удалением или вставкой одного нуклеотида в ДНК, что приводит к «сдвигу» считывания и следовательно – к изменению всех последующих триплетов.

Мутации могут происходить вследствие замены одной пары оснований на другую (вместо гуанилового нуклеотида – цитидиловый, аденилового – тимидиловый или наоборот). В таких случаях часто бывают реверсии – возвращение структуры ДНК в исходное состояние. Также может быть включение дополнительной пары оснований (дупликация) или потеря (делеция) пары оснований. Реверсии обычно редки. Возникают также перемещения (транслокации) группы оснований или даже генов в пределах хромосомы. Здесь практически реверсий не бывает. Возможен поворот ДНК на 180 градусов – изменение ориентации сегмента ДНК (инверсия).

Могут возникать также структурные искажения ДНК (или мутации деформации спирали ДНК). Они могут возникать, например, в результате димеризации расположенных близко нуклеотидов, особенно тимина, под действием ультрафиолета, что препятствует правильной репликации.

Как уже упоминалось, мутации могут быть связаны и с подвижными элементами генома – с перемещением инсерционных последовательностей и транспозонов по хромосоме бактерии или из репликона в репликон (из хромосомы в плазмиду и

70