Файл: Введение. Предмет и задачи микробиологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.11.2023

Просмотров: 444

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Лечение дисбактериоза

Радиационная  стерилизация.      Лучистая  энергия губительно действует на клетки живого организма, в том числе  на различные микроорганизмы. Принцип  стерилизующего эффекта этих излучений  основан на способности вызывать в живых клетках при определенных дозах поглощенной энергии такие изменения, которые неизбежно приводят их к гибели за счет нарушения метаболических процессов. Чувствительность микроорганизмов к ионизирующему излучению зависит от многих факторов: наличия влаги, температуры и др.     Облучение объектов в конечной упаковке производят на гамма-установках, ускорителях электронов и других источниках ионизирующего излучения дозой 25 кГр (2,5 Мрад) или другими дозами в зависимости от конкретных условий (микробная обсемененность продукции до стерилизации, радиорезистентность контаминатов, величина коэффициента надежности стерилизации). Стерилизацию проводят в соответствии со "Сводом правил, регламентирующих проведение в странах - членах СЭВ радиационной стерилизации материалов и изделий медицинского назначения" и "Сводом правил, регламентирующих проведение в странах - членах СЭВ радиационной стерилизации лекарственных средств" и утвержденными инструкциями на каждый вид изделия.     Радиационный  метод стерилизации может быть рекомендован для изделий из пластмасс, изделий одноразового использования в упаковке, перевязочных материалов, некоторых лекарственных средств и других видов медицинской продукции.     Радиоактивная стерилизация является высокоэффективной   для   крупных производств. Стерилизация фильтрованием.      Микробные клетки и споры можно рассматривать  как нерастворимые образования  с очень малым (1—2 мкм) поперечником частиц. Подобно другим включениям, они могут быть отделены от жидкости механическим путем — фильтрованием  сквозь мелкопористые фильтры. Этот метод стерилизации включен в ГФ XI для стерилизации термолабильных растворов. Такими фильтрами могут быть перегородки из неглазурованного фарфора (керамики), асбеста, стекла, пленок, пропитанных коллодием, и другого пористого материала. По конструкции их подразделяют на глубинные и мембранные фильтры с размерами пор не более 0,3 мкм. В настоящее время используют различные фильтры. Глубинные фильтры: керамические и фарфоровые (размер пор 3—4 мкм), стеклянные (около 2 мкм), бумажно-асбестовые (1 —1,8 мкм), а также мембранные (ультра) фильтры и «Владипор» (0,3 мкм) и др.Перспективными  являются также полимерные пленки   с   цилиндрическими порами —  ядерные   фильтры.     Стерилизующее фильтрование осуществляют в установках, основными частями которых являются фильтродержатель и фильтрующая среда. Используют два типа держателей: пластинчатые, в которых фильтр имеет форму круглой или прямоугольной пластины, и патроны, содержащие один или больше трубчатых фильтров. Перед фильтрованием производят стерилизацию фильтра в держателе и емкости для сбора фильтрата насыщенным водяным паром при температуре 120+2 °С или горячим воздухом при температуре 180 °С.     Стерилизующая фильтрация с помощью фильтров имеет  преимущества по сравнению с методами термической стерилизации. Для многих растворов термолабильных веществ (апоморфина гидрохлорида, викасола, барбитала натрия и др.) он является единственно доступным методом стерилизации. Стерилизующая фильтрация перспективна для стерилизации глазных капель, особенно с витаминами, которые готовят в условиях аптек в больших количествах. Использование мембранных фильтров обеспечивает чистоту, стерильность и апирогенность растворов.Стерилизация ультрафиолетовой радиацией.УФ-радиация является мощным стерилизующим фактором, способным убивать и вегетативные, и споровые формы микроорганизмов. В настоящее время ультрафиолетовая радиация широко используется в различных отраслях народного хозяйства для обеззараживания воздуха помещений, воды и других объектов. Использование их в аптеках имеет большое практическое значение и существенные преимущества по сравнению с применением дезинфицирующих веществ, так как последние могут адсорбироваться лекарственными средствами приобретая резкие запахи.     УФ-радиация — невидимая коротковолновая  часть солнечного света с длиной волны меньше 300 нм. Она вызывает фотохимическое нарушение ферментных систем микробной клетки, действует на ее протоплазму с образованием ядовитых органических пероксидов, а также приводит к фотодимеризации тиаминов.     Эффективность бактерицидного действия УФ-радиации зависит от ряда факторов: от длины волны излучателя, его дозы, вида инактивируемых микроорганизмов, запыленности и влажности среды. Наибольшей стерилизующей способностью обладают лучи с длиной волны 254—257 нм. Имеет значение величина дозы и время облучения. В зависимости от времени воздействия излучения различают стадию стимуляции, угнетения и гибели микробных клеток. Вегетативные клетки более чувствительны к УФ-радиации, чем споры. Для их гибели требуется доза, в среднем в 10 раз выше, чем для вегетативных клеток.     В качестве источников ультрафиолетовой радиации в аптеках применяют  специальные лампы БУВ (бактерицидная  увиолевая). Излучение лампы БУВ обладает большим бактерицидным  действием, так как максимум излучения лампы близок к максимуму бактерицидного действия (254 нм). В то же время образование озона и окислов азота незначительно, поскольку на долю волн, образующих эти продукты, приходится 0,5 %. Промышленностью выпускаются лампы БУВ-15, БУВ-30, БУВ-60 и др. (цифра обозначает мощность в ваттах).     В настоящее время ультрафиолетовые лампы широко используются в аптеках  для стерилизации воздуха, воды для  инъекций и воды дистиллированной, вспомогательных материалов и т. д.     Для обеззараживания воздуха аптечных помещении используют различные бактерицидные лампы. Количество и мощность бактерицидных ламп должны подбираться с таким расчетом, чтобы при прямом облучении на 1 м объема помещения приходилось не менее 2—2,5 Вт мощности излучателя, а для экранированных    бактерицидных    ламп — 1  Вт.     Настенные и потолочные бактерицидные облучатели подвешиваются на высоте 1,8—2 м от пола, размещая их по ходу конвекционных  токов воздуха, равномерно по всему  помещению. В отсутствие людей стерилизацию воздуха проводят неэкранированными лампами из расчета 3 Вт мощности лампы на 1 м" помещения. Время стерилизации 1,5—2 ч. Удобнее пользоваться в аптеках экранированными лампами, лучи которых направлены вверх и не оказывают воздействия на глаза и кожные покровы. Наличие экранированных ламп позволяет обеззараживать воздух в присутствии персонала. В этом случае число ламп определяется из расчета 1 Вт мощности лампы на 1 м3 помещения.          При стерилизации воздуха УФ-радиацией  необходимо учитывать возможность  многочисленных химических реакций (фотораспад, фотоперегруппировка, фотосенсибилизация и др.) лекарственных веществ при поглощении ими радиации. Если натрия, кальция и калия хлориды, магния сульфат, натрия цитрат и другие вещества не поглощают излучение в области 254 нм, то барбитал натрия, дибазол, папаверина гидрохлорид, апоморфин, новокаин, анальгин поглощают его, следовательно, в этих веществах могут протекать различные фотохимические реакции. Поскольку в настоящее время этот вопрос полностью не изучен, целесообразно все лекарственные вещества, находящиеся в помещении, хранить в таре, не пропускающей УФ-радиацию (стекло, полистирол, окрашенный полиэтилен и др.).     При стерилизации воздуха УФ-радиацией  необходимо соблюдать правила техники  безопасности, чтобы избежать нежелательного воздействия на организм. При неумелом пользовании облучателями может произойти ожог конъюнктивы глаз и кожи. Поэтому категорически запрещается смотреть на включенную лампу. При изготовлении лекарственных препаратов в поле УФ-радиации надо защищать руки 2 % раствором или 2 % мазью новокаина или кислоты парааминобензойной. Также необходимо систематически проветривать помещение, так как при этом образуются окислы азота и озон.     УФ-радиацию используют и для стерилизации воды дистиллированной при подаче ее по трубопроводу, что имеет большое  значение при асептическом изготовлении лекарственных препаратов в отношении наличия микроорганизмов в нестерильных лекарственных формах. При стерилизации воды дистиллированной не происходит накопления пероксидных соединений. Под влиянием УФ-радиации инактивируются некоторые пирогенные вещества, попавшие в воду.      Лампы ультрафиолетового излучения целесообразно  использовать для обеззараживания  поступающих в аптеку рецептов и  бумаги, являющихся одним из основных источников микробного загрязнения  воздуха и рук ассистента. Ультрафиолетовую радиацию можно использовать также для стерилизации вспомогательных материалов и аптечного инвентаря, что имеет большое значение для создания асептических условий.     Химическая  стерилизация.      Этот  метод основан на высокой специфической (избирательной) чувствительности микроорганизмов к различным химическим веществам, что обусловливается физико-химической структурой их оболочки и протоплазмы. Механизм антимикробного действия веществ еще не достаточно изучен. Считают, что некоторые вещества вызывают коагуляцию протоплазмы клетки, другие действуют как окислители, ряд веществ влияет на осмотические свойства клетки, многие химические факторы вызывают гибель микробной клетки благодаря разрушению окислительных и других ферментов.     Химическая стерилизация подразделяется на стерилизацию газами и стерилизацию растворами. Газовая стерилизация.      Своеобразной  химической стерилизацией является метод стерилизации газами и аэрозолями. Для этого можно использовать газы: оксиды этилена и пропилена, оксиды (3-пропиллактона, полиэтиленоксиды, смесь этилена оксида с углерода диоксидом или метилом бромистым и др.).     Газовая стерилизация. Этот вид химической стерилизации основан на применении летучих дезинфицирующих веществ, легко удаляемых из стерилизуемого объекта, путем слабого нагревания или вакуума. Применяется для стерилизации чувствительных к нагреванию лекарственных веществ. На практике используются два вещества — окись этилена и р-пропиолактон. Их антимикробное действие основано на спонтанном гидролизе, которому указанные газы подвергаются в растворе, в результате чего образуются соединения, непосредственно действующие на микроорганизмы.     Метод стерилизации окисью этилена в смеси  с углекислым газом был включен  в фармакопею США 1965 г. и Британскую фармакопею 1963 г. Жидкая окись этилена кипит при 10,7°, хранится в стальных баллонах, легко воспламеняется, раздражающе действует на кожу. В концентрации 0,5 мг на 1 мл окись этилена становится безвредной для человека. Для еще большего уменьшения вредного воздействия применяется в смеси с углекислым газом (9+1 часть). Окись этилена используют для стерилизации как термолабильных веществ, так и инструментов, аппаратуры, пластмасс, перевязочных материалов. Обработку осуществляют в специальных аппаратах с камерами, где поочередно создают вакуум и давление, после чего производят 2—4-кратную обработку стерильным воздухом. Для стерилизации растворов достаточно 400—500 мг окиси этилена на 1 л при 20°; длительность экспозиции 6 ч. Для стерилизации растворов р - пропиолактоном применяют 0,2% объемную концентрацию газа при 37°С в течение 2 ч.     При химической стерилизации газами погибают вегетативные формы микроорганизмов  и плесневые грибы. Чувствительность различных видов микроорганизмов  к ядовитым газам весьма индивидуальна. Так, стрептококки погибают .в воздухе при концентрации этилена оксида 500 мг/м

СУЛЬФАНИЛАМИДЫ

Группа хинолонов/фторхинолонов

Симптомы

Диагноз ВИЧ-инфекции

биодоступностью  позволяет проводить ступенчатую терапию, которая при сопоставимой клинической эффективности существенно дешевле парентеральной.

Высокая бактерицидная активность фторхинолонов позволила разработать для ряда препаратов (ципрофлоксацин, офлоксацин, ломефлоксацин, норфлоксацин) лекарственные формы для местного применения в виде глазных и ушных капель.

Механизм действия



Хинолоны оказывают бактерицидный эффект. Ингибируя два жизненно важных фермента микробной клетки - ДНК-гиразу и топоизомеразу IV, нарушают синтез ДНК.

Спектр активности



Нефторированные хинолоны действуют преимущественно на грамотрицательные бактерии семейства Enterobacteriaceae (Е.coli, Enterobacter spp., Proteus spp., Klebsiella spp., Shigella spp., Salmonella spp.), а также Haemophillus spp. и Neisseria spp. Оксолиновая и пипемидовая кислоты, кроме того, активны в отношении S.aureus и некоторых штаммов P.aeruginosa, но это не имеет клинического значения.

Фторхинолоны имеют значительно более широкий спектр. Они активны в отношении ряда грамположительных аэробных бактерий (Staphylococcus spp.), большинства штаммов грамотрицательных, в том числе Е.coli (включая энтеротоксигенные штаммы), Shigella spp., Salmonella spp., Enterobacter spp., Klebsiella spp., Proteus spp., Serratia spp., Providencia spp., Citrobacter spp., M.morganii, Vibrio spp., Haemophilus spp., Neisseria spp., Pasteurella spp., Pseudomonas spp., Legionella spp., Brucella spp., Listeria spp.

Кроме того, фторхинолоны, как правило, активны в отношении бактерий, устойчивых к хинолонам I поколения. Фторхинолоны III и, особенно, IV поколения высокоактивны в отношении пневмококков, более активны, чем препараты II поколения, в отношении внутриклеточных возбудителей (Chlamydia spp., Mycoplasma spp., M.tuberculosis, быстрорастущих атипичных микобактерий (M.avium и др.), анаэробных бактерий (моксифлоксацин). При этом не уменьшается активность в отношении грамотрицательных бактерий. Важным свойством этих препаратов является активность в отношении ряда бактерий, устойчивых к фторхинолонам II поколения. В связи с высокой активностью в отношении возбудителей бактериальных инфекций ВДП
  и НДП  их иногда называют “респираторными” фторхинолонами.

В различной степени к фторхинолонам чувствительны энтерококки, Corynebacterium spp., Campylobacter spp., H.pylori, U.urealyticum.


Фармакокинетика


Все хинолоны хорошо всасываются в ЖКТ. Пища может замедлять всасывание хинолонов, но не оказывает существенного влияния на биодоступность . Максимальные концентрации в крови достигаются в среднем через 1-3 ч после приема внутрь. Препараты проходят плацентарный барьер, и в небольших количествах проникают в грудное молоко. Выводятся из организма преимущественно почками и создают высокие концентрации в моче. Частично выводятся с желчью.

Хинолоны I поколения не создают терапевтических концентраций в крови, органах и тканях. Налидиксовая и оксолиновая кислоты подвергаются интенсивной биотрансформации и выводятся преимущественно в виде активных и неактивных метаболитов. Пипемидовая кислота мало метаболизируется и выводится в неизмененном виде. Период полувыведения  налидиксовой кислоты составляет 1-2,5 ч, пипемидовой кислоты - 3-4 ч, оксолиновой кислоты - 6-7 ч. Максимальные концентрации в моче создаются в среднем через 3-4 ч. При нарушении функции почек выведение хинолонов значительно замедляется.

Фторхинолоны, в отличие от нефторированных хинолонов, имеют большой объем распределения, создают высокие концентрации в органах и тканях, проникают внутрь клеток. Исключение составляет норфлоксацин, наиболее высокие уровни которого отмечаются в кишечнике, МВП и предстательной железе. Наибольших тканевых концентраций достигают офлоксацин, левофлоксацин, ломефлоксацин, спарфлоксацин, моксифлоксацин. Ципрофлоксацин, офлоксацин, левофлоксацин и пефлоксацин проходят через ГЭБ, достигая терапевтических концентраций.

Степень метаболизма зависит от физико-химических свойств препарата: наиболее активно биотрансформируется пефлоксацин, наименее активно - ломефлоксацин, офлоксацин, левофлоксацин. С калом выводится от 3-4% до 15-28% принятой дозы.

Период полувыведения  у различных фторхинолонов колеблется от 3-4 ч (норфлоксацин) до 12-14 ч (пефлоксацин, моксифлоксацин) и даже до 18-20 ч (спарфлоксацин).

При нарушении функции почек наиболее значительно удлиняется период полувыведения офлоксацина
, левофлоксацина и ломефлоксацина. При тяжелой почечной недостаточности необходима коррекция доз всех фторхинолонов. При тяжелых нарушениях функции печени может потребоваться коррекция дозы пефлоксацина.

При гемодиализе фторхинолоны удаляются в небольших количествах (офлоксацин - 10-30%, остальные препараты - менее 10%).

Нежелательные реакции




Общие для всех хинолоно:


1) ЖКТ: изжога, боль в эпигастральной области, нарушение аппетита, тошнота, рвота, диарея.

2) ЦНС: ототоксичность, сонливость, бессонница, головная боль, головокружение, нарушения зрения, парестезии, тремор, судороги.

3) Аллергические реакции: сыпь, зуд, ангионевротический отек; фотосенсибилизация (наиболее характерна для ломефлоксацина и спарфлоксацина). Аллергия перекрестная ко всем препаратам группы хинолонов.

Характерные для хинолонов I поколения:


1)Гематологические реакции: тромбоцитопения, лейкопения; при дефиците глюкозо-6-фосфатдегидрогеназы - гемолитическая анемия.

2) Печень: холестатическая желтуха, гепатит.

Характерные для фторхинолонов (редкие и очень редкие)


1)Опорно-двигательный аппарат: артропатия, артралгия, миалгия, тендинит, тендовагинит, разрыв сухожилий.

2)Почки: кристаллурия, транзиторный нефрит.

3)Сердце: удлинение интервала QT на электрокардиограмме.

4) Другие: наиболее часто - кандидоз слизистой оболочки полости рта и/или вагинальный кандидоз, псевдомембранозный колит.

Показания




1) Хинолоны I поколения: Инфекции МВП: острый цистит, противорецидивная терапия при хронических формах инфекций. Не следует применять при остром пиелонефрите.


Кишечные инфекции : шигеллез, бактериальные энтероколиты (налидиксовая кислота).

2) Фторхинолоны. Инфекции ВДП: синусит, особенно вызванный полирезистентными штаммами, злокачественный наружный отит. Инфекции НДП: обострение хронического бронхита, внебольничная и нозокомиальная пневмония, легионеллез. Кишечные инфекции: шигеллез, брюшной тиф, генерализованный сальмонеллез, иерсиниоз, холера. Сибирская язва. Интраабдоминальные инфекции.


Инфекции органов малого таза
 .

Инфекции МВП  (цистит, пиелонефрит).

Простатит.

Гонорея .

Инфекции кожи, мягких тканей, костей и суставов .

Инфекции глаз .

Менингит , вызванный грамотрицательной микрофлорой (ципрофлоксацин).

Сепсис .

Бактериальные инфекции у пациентов с муковисцидозом.

Нейтропеническая лихорадка .

Туберкулез  (ципрофлоксацин, офлоксацин и ломефлоксацин в комбинированной терапии при лекарственноустойчивом туберкулезе).

Норфлоксацин, с учетом особенностей фармакокинетики, применяется только при кишечных инфекциях , инфекциях МВП  и простатите.