Файл: Labaratorni_z_fiziki__vidpovidi_na_kontrolni.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.03.2024

Просмотров: 229

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

5. Підрахувати кількість обертів, що їх зробив маховик, поки опускався тягар, за формулою:

n =

h

,

(2.4.16)

r

1

 

 

 

 

 

де h – шлях, пройдений тягарем, що опускався, r радіус шківа. Визначити кількість обертів, що їх зробив маховик після

припинення дії тягаря до повної зупинки:

n2 = n n1 .

(2.4.17)

Знайдені експериментально дані n1, n2, t і h підставити

уформулу (2.4.9) й обчислити момент інерції маховика.

6.Дослід повторити 4-5 разів, їх результати занести в таблицю 4.4.1. Знайти середнє арифметичне значення моменту інерції маховика, оцінити абсолютну та відносні похибки.

Завдання 2

1.Нитку довжиною h одним кінцем закріпити на шківі

йнамотати на нього. До другого кінця нитки прикріпити тягар.

2.Одночасно пустити тягар і увімкнути секундомір. Визначити час опускання тягаря.

3.Визначити висоту h1 (рис. 2.4.1) , на яку піднявся тягар,

поки маховик обертався за інерцією. За формулою (2.4.15) обчислити момент інерції маховика.

4. Дослід виконати 4-5 разів; результати занести в таблицю 2.4.2; знайти середнє арифметичне значення моменту інерції маховика, абсолютну та відносні похибки.

Завдання 3

1.Нарисувати схематично маховик.

2.Визначити геометричні розміри маховика, його масу. Обчислити теоретичне значення моменту інерції маховика

IТ , уявно розбивши маховик на тіла (диск та диск із отвором), моменти інерції яких відомі.

3. Порівняти значення моментів інерції маховика, визначених за формулами (2.4.9), (2.4.15) та його теоретичним значенням.

45


Контрольні питання

1.Робота, потенціальна енергія, кінетична енергія поступального та обертового рухів (с.9-11, 18-23).

2.Закон збереження енергії в механіці. Дисипативні та консервативні сили (с.9-11).

3.Момент інерції стержня, однорідного диска, диска з центральним отвором, тонкостінного кільця (с. 18-23).

4.Основне рівняння динаміки обертового руху. Кутове прискорення, момент сили, момент інерції, момент імпульсу (с.

17-24).

5.Теорема Штейнера та її застосування (с. 22-23).

6.Вивести формули для визначення моментів інерції простих тіл (стержня, обруча, диска, диска з центральним отвором), (с. 18-23).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таблиця 2.4.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m,

 

r,

 

h,

 

t,

 

n

 

n1

n2

I1,

I1c,

DI1,

e,

кг

 

м

 

м

 

c

 

 

кг×м2

кг×м2

кг×м2

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С.зн.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таблиця 2.4.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m,

 

r,

 

h,

 

t,

 

h1,

 

h2,

 

I2,

 

I2c,

DI2,

 

e,

кг

 

м

 

м

 

c

 

м

 

м

кг×м2

кг×м2

кг×м2

 

%

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С.зн.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

 

 

 

 

 

 

 

 

 

 

 


Лабораторна робота 1.5 Визначення моменту інерції маятника Обербека

Мета роботи. Вивчення основного закону динаміки обертального руху шляхом визначення моментів інерції маятника Обербека.

Прилади і матеріали. 1. Маятник Обербека. 2. Набір тягарців.2 Секундомір. 3 Лінійка

Теоретичні відомості

У даній роботі потрібно визначити момент інерції маятника Обербека. Прилад являє собою хрестовину (рис. 2.3.1), яка складається з чотирьох взаємно перпендикулярних стержнів. Уздовж стержнів можуть переміщатися важки однакової маси На горизонтальній осі хрестовини знаходиться двоступінчастий диск, на який намотується нитка. Один кінець нитки прикріплений до диска, а до другого кінця нитки підвішується важок. Під дією важка нитка розмотується з диска і викликає обертальний рух хрестовини. Рух хрестовини наближено можна вважати рівномірно прискореним. Визначити момент інерції даної системи можна двома методами: експериментально і теоретично.

І метод. Запишемо основним рівняння динаміки

обертального руху:

 

ε =

M

.

(2.5.1)

 

 

I

 

Відповідно момент інерції маятника відносно осі обертання дорівнює

I =

M

,

(2.5.2)

ε

 

 

 

де М момент сил відносно осі обертання, ε –

кутове

прискорення.

 

 

47

 

 

 


 

 

D

 

 

d

 

R3

r2

 

 

m2

m1

L

 

 

l0

 

R0

 

 

 

r1

l

 

 

m

Рис. 2.5.1

Модуль моменту сили, що діє на шків, можна визначити, якщо відома сила, що діє на шків та радіус шківа. Цією силою є сила натягу нитки:

F = mg ma ,

(2.5.3)

де a прискорення руху важку, g прискорення вільного падіння.

48

Отже, модуль моменту сил, прикладених до маятника Обербека відносно осі обертання, дорівнює

M = Fr = m(g a)r ,

(2.5.4)

де m маса важка, r радіус шківа.

 

 

Оскільки рух важка рівномірно прискорений, то

h =

at 2

= ε rt 2

,

(2.5.5)

 

2

 

 

2

 

 

 

де h висота падіння важка масою m, t час падіння.

Отже, модуль кутового прискорення дорівнює

 

 

ε =

2h

.

 

(2.5.6)

 

 

 

 

 

 

 

 

rt 2

 

 

Підставивши у формулу (1.1.2) значення з формул (1.5.4) і

(2.5.6), одержимо:

 

 

 

 

 

 

I екс =

mgt 2 r 2

mr 2 .

(2.5.7)

 

 

 

2h

 

 

 

 

ІІ метод. Уявно розібємо маятник на систему обертових

тіл: чотирьох стержнів довжиною L

і

масою m1 , чотирьох

циліндричних тіл масою т2 і довжиною l0,

та диска масою m3 та

радіусом R3 . Вісь обертання

системи проходить через центр

диска. Момент інерції маятника дорівнює сумі моментів інерції тіл, що утворюють маятник.

Момент інерції стержня довжиною

 

L

відносно осі, що

проходить

через його

центр, дорівнює

I

c

= m L2

12 ,

а його

 

 

 

 

 

 

 

 

 

 

 

1

 

 

момент інерції відносно осі обертання

 

 

 

 

 

 

 

 

 

L

2

m L2

L

2

 

 

Io

= Ic

+ m1

 

+ R3 =

1

 

+ m1

 

 

 

 

+ R3

,

(2.5.8)

 

12

 

 

 

 

 

 

2

 

 

 

2

 

 

 

де m маса

одного

стержня,

 

L

+ R

 

відстань

між

віссю

2

 

1

 

 

 

 

3

 

 

 

 

 

 

 

обертання та центром мас стержня..

Момент інерції чотирьох таких стержнів:

49


 

 

m L2

L

2

 

 

I1 =

1

+ 4m1

 

+ R3

(2.5.9)

 

3

 

 

 

2

 

 

де m1 маса стержня,

що може бути обчислена

за формулою:

m = ρV = ρ π d 2

L , ρ – густина матеріалу стержня, d його

1

4

 

 

 

 

 

 

 

 

 

 

 

діаметр.

Розміри малих циліндричних тіл (важків), закріплених на стержнях, малі порівняно з відстанню l від осі обертання до центрів мас цих тіл, тому їх можна розглядати як матеріальні точки, сумарний момент інерції яких

 

 

I

2

= 4m

2

l 2 .

(2.5.10)

 

 

 

 

 

 

 

 

де l = R +

l0

відстань від осі обертання до центрів мас

 

0

2

 

 

 

 

 

 

 

 

 

 

 

 

π (D2

d 2 l

 

 

 

 

 

циліндричних тіл (важків), m =

 

 

 

o

його маса,

 

 

 

 

 

 

 

 

2

 

 

 

4

 

 

 

 

 

 

 

 

 

 

D діаметр, d діаметр його отвору ( стержня , на якому насаджено важок).

Момент інерції диска, на якому закріплені стержні (мо- ментами інерції шківів диска нехтуємо):

I 3 =

m R 2

 

3 3

,

(2.5.11)

2

 

 

 

де m3 маса диска, R3 радіус диска.

Теоретичне значення моменту інерції всього маятника (моментом інерції шківів нехтуємо, оскільки їх маса досить мала) дорівнює:

 

 

IÒÅÎ Ð

= I1 + I2 + I3 =

 

 

 

 

 

 

m L2

 

 

L

 

2

 

 

 

m R2 .

(2.5.12)

=

1

+ 4 m

 

 

+ R

 

+ m l 2

 

+

3 3

 

 

 

 

 

 

 

 

 

3

 

1

3

2

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50