Файл: Диссертация на соискание ученой степени.docx

ВУЗ: Не указан

Категория: Диссертация

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 304

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Подсистема сбора данных

Подсистема формирования знаний База знаний

1,

 

exp

СЛОВАРЬ ТЕРМИНОВ Агрегирование – это определение степени истинности условий для каждого правила в системе нейро-нечеткого вывода – минимизация значений всех подусловий.Аккумуляция – это определение функции принадлежности для каждой из переменных. Аккумуляция выполняется с целью объединения всех степеней истинности подзаключений для определения функции принадлежности каждой из выходных переменных.Дефаззификация – переход от функции принадлежности выходной лингвистической переменной к её четкому (числовому) значению.Система нечеткого логического вывода – это процесс получения нечетких заключений об объекте на основе данных о его текущем состоянии, в виде нечетких условий или предпосылок.Фаззификация – преобразование входных данных в нечеткие переменные с помощью функций принадлежности для определения соответствия входных данных термам лингвистических переменных. СПИСОК ЛИТЕРАТУРЫ Биргер И. А. Техническая диагностика / И. А. Биргер - М.: Машиностроение, 1978.– 240 с. Клюев В. В. Неразрушающий контроль и диагностика: Справочник / В. В. Клюев, Ф. Р. Соснин, В. Н. Филинов и др. - М.: Машиностроение, 2003. – 657 с. Сви П. М. Методы и средства диагностики оборудования высокого напряжения / П. М. Сви. - М.: Энергоатомиздат, 1992.– 240 с. Концепция диагностики электротехнического оборудования подстанций и линий электропередачи электрических сетей ОАО "ФСК ЕЭС". М., 2004.- 188 с. Объем и нормы испытаний электрооборудования: РД 34.45- 51.300– 97: утв. Департаментом науки и техники РАО «ЕЭС России» 08.05.97. – М. : ЭНАС, 2004. – 153 с. Екатеринбургская электросетевая компания. Годовой отчет ОАО «ЕЭСК» за 2012 год [Электронный ресурс]: офиц. сайт. – Режим доступа: http://www.eesk.ru/actioners/Otchetnie_dokumenti/Ezhegodnaja_otchetnost. – Загл. с экрана (дата обращения 05.02.2015). МРСК Урала. Годовой отчет 2012 [Электронный ресурс]: офиц. сайт. – Режим доступа: http://report2012.mrsk-ural.ru/reports/mrskural/annual/ 2012/gb/Russian/9030.html. – Загл. с экрана (дата обращения 05.01.2015). Россети. Годовой отчет 2009 год [Электронный ресурс]: офиц. сайт. – Режим доступа: http://www.rosseti.ru/investors/info/year/. – Загл. с экрана (дата обращения 05.01.2015). Галкин В. С. Вопросы проектирования автоматизированных систем мониторинга электрооборудования на подстанциях 500–220 кВ с учетом обеспечения надежности электрических сетей / В. С. Галкин, Т. М. Лангборт, В. А. Липаткин, В. А. Смирнов // Электрические станции. – 2006. – № 7. – С. 66–67. Спарлинг Б. Д.. Повышение уровня мониторинга и диагностики для оптимизации передачи и распределения электроэнергии в целях улучшения финансовых показателей / Б. Д. Спарлинг // Методы и средства оценки состояния энергетического оборудования / под ред. А. И. Таджибаева, В. Н. Осотова. – СПб., 2005. – Вып. 28. – С. 178–202. Давиденко И. В. Структура экспертно-диагностической и информационной системы оценки состояния высоковольтного оборудования / И. В. Давиденко, В. П. Голубев, В. И. Комаров, В. Н. Осотов // Электрические станции: ежемесячный производственно-технический журнал. - 1997. - N 6. - С. 25-27. Димрус [Электронный ресурс]: офиц. сайт. – Режим доступа: http://dimrus.ru/texts.html. – Загл. с экрана (дата обращения 05.01.2015). Контроль неразрушающий. Классификация видов и методов: ГОСТ 18353 - 79: утв. Постановлением Государственного комитета СССР по стандартам 11.11.79. – М., 1979. – 18 с. Контроль неразрушающий магнитный. Термины и определения: ГОСТ 24450 - 80: утв. Постановлением Государственного комитета СССР по стандартам 28.11.80. – М., 1980. – 6 с. Контроль неразрушающий электрический. Термины и определения: ГОСТ 25315 - 82: утв. Постановлением Государственного комитета СССР по стандартам 18.06.82. – М., 1982. – 7 с. Контроль неразрушающий вихретоковый. Термины и определения: ГОСТ 24289 - 80: утв. Постановлением Государственного комитета СССР по стандартам 30.06.80. – М., 1982. – 10 с. Контроль неразрушающий радиоволновой. Термины и определения: ГОСТ 25313 - 82: утв. Постановлением Государственного комитета СССР по стандартам 18.06.80. – М., 1982. – 8 с. Контроль неразрушающий. Методы теплового вида. Общие требования: ГОСТ 23483 - 79: утв. Постановлением Государственного комитета СССР по стандартам 08.02.79. – М., 1979. – 14 с. Контроль неразрушающий оптический. Термины и определения: ГОСТ 24521 - 80: утв. Постановлением Государственного комитета СССР по стандартам 23.02.82. – М., 1982. – 4 с. Контроль неразрушающий радиационный. Термины и определения: ГОСТ 24034 - 80: утв. Постановлением Государственного комитета СССР по стандартам 12.03.80. – М., 1980. – 12 с. Контроль неразрушающий. Методы акустические. Общие положения: ГОСТ 20415 - 82: утв. Постановлением Государственного комитета СССР по стандартам 30.12.80. – М., 1980. – 6 с. Контроль неразрушающий. Капиллярные методы. Общие требования: ГОСТ 18442 - 80: утв. Постановлением Государственного комитета СССР по стандартам 15.05.80. – М., 1980. – 16 с. Khalyasmaa А. I. Electrical equipment life cycle monitoring / А. I. Khalyasmaa, S. A. Dmitriev, D. A. Glushkov, D. A. Baltin, N. A. Babushkina // Advanced Materials Research. – 2014. – Vol. 1008-1009 – P. 536–539. Бром А. Е. Базовая модель стоимости жизненного цикла энергетического оборудования / А. Е. Бром, О. В. Белова, А. Сиссиньо // Гуманитарный вестник. – 2013. – Вып. 10. – С. 1–11. Давиденко И. В. Системы диагностирования высоковольтного маслонаполненного силового электрооборудования. / В. Н. Осотов, И. В. Давиденко // Учебное пособие для студентов и специалистов. Екатеринбург: УГТУ-УПИ, 2003. – 117 с. Хальясмаа А. И. Вопросы реализации оценки технического состояния силового оборудования на электрических подстанциях / А. И. Хальясмаа, С. А. Дмитриев, С. Е. Кокин, М. В. Осотова // Вопросы современной науки и практики. – 2013. – №1(45). – С. 289–300. Осотов В. Н. Некоторые аспекты оптимизации системы диагностики силового электрооборудования на примере Свердловэнерго: дис. канд. техн. наук: 05.14.02 / Осотов Вадим Никифировоч. – Екатеринбург, 2000. – 31 с. Основные положения (Концепция) технической политики в электроэнергетике России на период до 2030 года. ОАО РАО «ЕЭС России». [Электронный ресурс]: офиц. сайт. – Режим доступ: http://www.rao- ees.ru/ru/invest_inov/concept_2030.pdf. – Загл. с экрана (дата обращения: 05.02.2015). Asset management systems. Разработка методических указаний по оценке технического состояния оборудования «Холдинг МРСК» электронный ресурс: офиц. сайт. – Режим доступа: http://amstm.ru/projects/holding_mrsk/. – Загл. с экрана (дата обращения 01.03.2015). Попов Г. В. Экспертная система оценки состояния электрооборудования «Диагностика+» / Г. В. Попов, Е. Б. Игнатьев, Л. В. Виноградова, Ю. Ю. Рогожников, Д. А. Ворошина // Электрические станции. – 2011. – № 5. – С. 36–45. Давиденко И. В. Структура экспертно-диагностической и информационной системы оценки состояния высоковольтного оборудования / И. В. Давиденко, В. П. Голубев, В. И. Комаров, В. Н. Осотов // Электрические станции. – 1997. – №6. – С. 25–27. Давиденко И. В. Система компьютерной диагностики маслонаполненного оборудования в рамках энергосистемы / И. В. Давиденко, В. П. Голубев, В. И. Комаров, В. Н. Осотов, С. В. Туркевич // Энергетик. – 2000. – № 11. – С. 52–56. Хальясмаа А. И. Оценка состояния силовых трансформаторов на основе анализа данных технической диагностики / А. И. Хальясмаа, С. А. Дмитриев, С. Е. Кокин, М. В. Осотова // Вестник ЮУрГУ. – 2013. – Том 13. – №2. – С. 114–12. Шутенко О. В. Анализ функциональных возможностей экспертных систем, используемых для диагностики состояния высоковольтного маслонаполненного оборудования [Электронный ресурс] / О. В. Шутенко, Д. В. Баклай, // Вестник НТУ «ХПИ». – 2010. – С. 179–193. Кокин С. Е. Энерго-информационные модели функционирования и развития систем электроснабжения больших городов: дис. д-р. техн. наук: 05.14.02 / Кокин Сергей Евгеньевич. – Екатеринбург, 2013. – 367 с. Дмитриев С. А. Мониторинг системы электроснабжения мегаполиса на основе объектно-ориентированной графовой модели: дис. канд. техн. наук: 05.14.02 / Дмитриев Степан Александрович. – Екатеринбург, 2007. – 174 с. Мошинский О. Б. Разработка модели оценки функционального состояния системы электроснабжения мегаполисов: дис. канд. техн. наук: 05.14.02 / Мошинский Олег Борисович. – Екатеринбург, 2011. – 199 с. Соколов В. В. Ранжирование состаренного парка силовых трансформаторов по техническому состоянию / В. В. Соколов // Современное состояние и проблемы диагностики силового электрооборудования: материалы совместного заседания совета специалистов по диагностике силового электрооборудования при УРЦОТ и секции «Техническое обслуживание, мониторинг и диагностика электрооборудования» Четвертой Всерос. науч.-техн. конф. Новосибирск: НГТУ. - 2006. Хальясмаа А. И. Автоматизированная система принятия решений для оценки фактического состояния электрооборудования / А. И. Хальясмаа, С. А. Дмитриев, С. Е. Кокин // Сборник трудов V международная молодёжная научно-техническая конференция «Электроэнергетика глазами молодежи - 2014». – 2014. –С. 187–193. Jang J.-S. R. ANFIS: Adaptive-Network-Based Fuzzy Inference System / J.-S. R. Jang // IEEE Trans. Systems & Cybernetics. - 1993. - N 23. - C. 665 - 685. Ларичев О. И. Системы поддержки принятия решений. Современное состояние и перспективы их развития / О. И. Ларичев, А. В. Петровский // Итоги науки и техники. Сер. Техническая кибернетика. – 1987. – Т.21. – С. 131–164. Нейронные сети в Matlab. Предварительная обработка данных электронный ресурс: офиц. сайт. – Режим доступа: http://neural- networks.ru/Predvaritelnaya-obrabotka-dannyh-59.html. – Загл. с экрана (дата обращения 10.01.2015). Левин В. М. Диагностика и эксплуатация оборудования электрических сетей: учебное пособие / В. М. Левин. – Новосибирск: изд-во НГТУ, 2010. – 97 с. Управление знаниями. Базы знаний электронный ресурс: офиц. сайт. – Режим доступа: https://sites.google.com/site/upravlenieznaniami/inzeneria -znanij/bazy-znanij.html – Загл. с экрана (дата обращения 10.01.2015). Портал искусственного интеллекта. Базы знаний электронный ресурс: офиц. сайт. – Режим доступа: http://www.aiportal.ru/articles/knowledge-models/knowledge-bases.html – Загл. с экрана (дата обращения 10.01.2015). Энергетика и электрификация. Термины и определения: ГОСТ 19431 – 84: утв. Постановлением Государственного комитета СССР по стандартам 27.03.84. – М., 1986. – 73 с. Васильев A. A. Электрическая часть станций и подстанций: Учебник для вузов / A. A. Васильев, И. П. Крючков, Е. Ф. Наяшкова и др. - М.: Энергоатомиздат, 1990. - 576 с.: Неклепаев Б. Н. Электрическая часть электростанций и подстанций. Справочные данные для курсового и дипломного проектирования: Учеб. Пособие для вузов / Б. Н. Неклепаев, И. П. Крючков. - М.: Энергоатомиздат, 1989. - 608 с. Электрическая часть электростанции и электрической сети. Термины и определения: ГОСТ 24291 – 90: утв. Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам 27.12.90. – М., 1992. – 153 с. Глушков В. М. Энциклопедия кибернетики: в 2 т. / В. М. Глушков, Н. М. Амосов, И. А. Артеменко. – Киев: Главная редакция украинской советской энциклопедии, 1974. 2 т. - 624 с. Хальясмаа А. И. Вопросы реализации систем оценки фактического состояния электрооборудования для энергетических предприятий / А. И. Хальясмаа, С. А. Дмитриев, С. Е. Кокин, Д. А. Глушков // Научное обозрение. – 2013. – №4. – С. 241–245. Надежность в технике. Термины и определения: ГОСТ 53480 – 2009: утв. Приказом Федерального агентства по техническому регулированию и метрологии от 09.12.2009 г. 15.11.89. – М.: Стандартинформ, 2010. – 33 с. Методические указания по оценке состояния и продлению срока службы силовых трансформаторов: РД ЭО 0410 – 02: принят и введен в действие концерном «Росэнергоатом» 01.01.2004. – М. : Альвис, 2004. – 44 с. Учебник по базам данных. Типы моделей данных электронный ресурс: офиц. сайт. – Режим доступа: http://dssp.petrsu.ru/IVK/book/ 2/2_1_3.html – Загл. с экрана (дата обращения 10.01.2015).

, отражающая знания экспертов о методах управления объектом в различных ситуациях, характере его функционирования в различных условиях и т.п., т.е. содержащая формализованные человеческие знания.

Простейший вариант правила нечеткой продукции, который наиболее часто используется в системах нечеткого вывода, может быть записан в форме:

«если "β1 есть α’", тогда "β2 есть α’’» (13) где нечеткое высказывание «β1 есть α’» представляет собой условие данного правила нечеткой продукции, а нечеткое высказывание «β2 есть α’’» - нечеткое заключение данного правила. При этом считается, что β1≠β2.

60


Рисунок 9 Обобщенная структура нейро-нечеткого логического вывода


      1. Определениечислафункцийпринадлежности

Для каждого параметра, описывающего состояние анализируемого объекта, важно определить количество функции принадлежности (диапазонов значений), наилучшим образом характеризующее данный параметр. Для этого необходимо исходить из рассматриваемой задачи и требуемой точности описания в рассматриваемой задаче.

      1. Определениевидафункций принадлежности

Для каждого параметра, описывающего состояние анализируемого объекта, также важно определить вид функции принадлежности, наилучшим образом характеризующий данный параметр.

Рассмотрим так называемые стандартные функции принадлежности. Стандартные функции принадлежности легко
применимы к решению большинства задач.

Выделяют следующие типовые функции принадлежности 69:

  • кусочно-линейные - набор отрезков прямых линий, образующих непрерывную или кусочно-непрерывную функцию;

  • гауссовы образованные на основе гауссова распределения;

  • сигмоидную кривую и т. д.

Примерами кусочно-линейных функций принадлежности (Рис. 10) являются треугольная (a) и трапециевидная (b).













     õ
Рисунок 10 кусочно-линейные функции принадлежности

В общем виде треугольные функции принадлежности аналитически можно представить следующим образом:

0, x a



xa




x ba

c x
, a x b

(13)

, b x c

c b



0, cx


где

a,b,c произвольные значения, при условии, что a b c.

В общем виде трапециевидные функции принадлежности аналитически

можно представить следующим образом:

0, x a



xa


b a


1,
x



dx


d c
, a x bb x c

, c x d


(14)


0,

d x

где

a,b,c, d произвольные значения, при условии, что a b c d.

Z-образная (с) и S-образная (d) функции принадлежности (Рис. 11)

представляют собой сплайн-функции.
















     õ


Рисунок 11 Z-образная и S-образная функции принадлежности

В общем виде Z-образную функцию принадлежности аналитически можно представить следующим образом:

1,


1 1
xa

x a


(х)

cos


,a x b

(15)

2 2


0,

b a



x b

где

a,b произвольные значения, при условии, что a b.

S-образную функцию принадлежности в аналитическом виде можно

представить следующим образом:

0,





  1. a

1 1


xb

(х)


cos ,a x b

(16)

2 2


1,

b a



x b

где

a,b произвольные значения, при условии, что a b.

Частными случаями Z-образной и S-образной функций

принадлежности являются их линейные функции. Линейная S-образная функция в аналитическом виде представляется как

0, x a

(х) xa, a x b

b a

(17)

 

1, b x


где

как

a,b произвольные значения, при условии, что a b.

Линейная Z-образная функция в аналитическом виде представляется

1, x a

(х) bx,a x b

b a

(18)

 

0, b x

где

a,b произвольные значения, при условии, что a b.

Треугольные и трапециевидные функции принадлежности могут быть построены с помощью линейных Z-образной и S-образной функций принадлежности.

К отдельной группе можно отнести П-образные функции принадлежности: колоколообразную (Рис. 12) и гауссовы (Рис. 13) функции принадлежности.













     õ
Рисунок 12 Колоколообразная функция принадлежности

В общем виде колоколообразную функцию принадлежности можно представить следующим образом:

2b
(х)  1
1

(18)

где

a,b,c произвольные значения, при условии, что a b c

и b 0

75.

Также П-образные функции принадлежности могут быть построены с помощью Z-образной и S-образной функций принадлежности.

Гауссовы функции принадлежности бывают двух видов симметричная гауссова (e) и двухсторонняя гауссова (f). Они формируются с использованием гауссова распределения.

Аналитически симметричную гауссову функцию принадлежности можно представить следующим образом: