Файл: Биология_экзамен.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 23.04.2024

Просмотров: 497

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Цитология. Размножение организмов. Онтогенез

Особенности строения генов у прокариотических и эукариотических клеток

Экспрессия (проявление действия) гена в процессе синтеза белк

Инициация – начало синтеза и-рнк.

Элонгация –

Терминация –

2. Процессинг

3. Трансляция

Инициация

Элонгация

Терминация

14) Митоз, его биологическое значение. Эндомитоз, политения

15) Размножение - основное свойство живого. Бесполое и половое размножение, их отличия. Классификация форм размножения. Партеногенез.

16) Мейоз. Особенности первого и второго деления мейоза. Биологическое значение.

17) Оогенез, определение, схема. Цитологическая и цитогенетическая характеристика.

18) Сперматогенез, схема. Цитологическая и цитогенетическая характеристика

19) Морфофункциональные и генетические особенности половых клеток. Оплодотворение, его биологическая сущность.

20) Общая характеристика эмбрионального развития: зигота, дробление, гаструляция, гисто- и органогенез.

21) Механизмы регуляции развития на разных этапах онтогенеза. Эмбриональная индукция. Примеры.

22) . Механизмы регуляции эмбриогенеза. Гипотеза дифференциальной активности генов.

23) Постэмбриональное развитие: периодизация; закономерности роста и формирования; влияние внешних и внутренних факторов.

24) Биологические аспекты старения. Теории старения. Основные направления борьбы с преждевременной старостью

25) Продолжительность жизни человека. Влияние биологических, природно-климатических и социальных факторов на продолжительность жизни.

26) Смерть как заключительный этап онтогенеза. Клиническая и биологическая смерть. Реанимация.

27) Регенерация как свойство живого к самообновлению. Классификация регенерации, значение для биологии и медицины

28) Репаративная регенерация. Проявление регенерационной способности в фило- и онтогенезе

Факторы, определяющие репаративные способности разных видов

29) Формы репаративной регенерации. Способы ее осуществления. Примеры.

30) Механизмы регуляции регенерации. Методы стимуляции репаративной регенерации.

32) Биоритмы. Медицинское значение хронобиологии. Биологические ритмы

Адаптивные биоритмы

Генетика

Функциональная классификация генов

Критические периоды эмбриогенеза

Генеалогический метод

Признаки, характерные для родословной при аутосомно-доминантном типе наследования

1. Исследование кариотипа.

Классификация мутаций

Эволюционное учение

Экология

5. Ответные реакции организма на действие факторов среды носят индивидуальный, половой и возрастной характер.

Функциональная структура экосистемы:Абиотические факторы среды.

Границы биосферы

Паразитология

Адаптации к паразитизму

Природная очаговость нетрансмиссивных болезней

Профилактика паразитарных заболеваний

Профилактические мероприятия, направленные на источник инвазии:

Профилактические мероприятия, направленные на второе звено эпидемического процесса – механизм передачи возбудителя

Повышение невосприимчивости населения к возбудителям заболеваний

Общие принципы борьбы с природно-очаговыми заболеваниями

Хроматин интерфазных ядер представляет собой хромосомы, которые, однако, теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной. Зоны полной деконденсации и их участков морфологи называют эухроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина, иногда называемого гетерохроматином. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных хромосом. В этот период хромосомы не выполняют никаких синтетических функций, в них не происходит включения предшественников ДНК и РНК.

Таким образом, хромосомы клеток могут находиться в двух струк­турно-функциональных состояниях: в активном, рабочем, частично или полностью деконденсированном, когда с их участием в интер­фазном ядре происходят процессы транскрипции и редупликации, и в неактивном, в состоянии метаболического покоя при максималь­ной их конденсированности, когда они выполняют функцию распре­деления и переноса генетического материала в дочерние клетки.

В хромосомах существует множество мест независимой репликации ДНК — репликонов. ДНК эукариотических хромосом представ­ляют собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Синтез ДНК как на участках отдельной хромосомы, так и среди разных хромосом идет неодновременно, асинхронно. Так, например, в некоторых хромосомах че­ловека (1, 3, 16) репликация наиболее интенсивно начинается на концах хромосом и заканчивается (при высокой интенсивности включения метки) в центромерном районе. Наиболее поздно репликация заканчивается в хромосомах или в их участках, находящихся в компактном, конденсированном состоянии. Таким примером может являться поздняя репликация генетически инактивированной Х-хромосомы у женщин, формирующей в клеточном ядре компактное тельце полового хроматина. Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом (греч. karyon — ядро, typhe— форма). Этот термин введен в 1924 г. советским цитологом Г. А. Левитским. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна пара — половых хромосом (гетерохро­мосом).

Для изучения кариотипа человека обычно используют клетки костного мозга и культуры фибробластов или лейкоцитов периферической крови, так как эти клетки легче всего получить. При приготовлении препаратов хромо-1 сом к культуре клеток добавляют колхицин, останавливающий деление кле­ток на стадии метафазы. Затем клетки обрабатывают гипотоническим рас­твором, отделяющим хромосомы друг от друга, после чего их фиксируют и окрашивают.


Благодаря такой обработке каждая хромосома четко видна в световом микроскопе. Длина хромосом колеблется ,от 2,3 до 11 мкм.

Для того чтобы легче было разобраться в сложном комплексе хромосом, составляющем кариотип, их располагают в виде и д и о г р а м м ы (от греч. idios— своеобразный, gramme— запись). Составление идиограмм, как и сам термин, предложено советским цитологом С. Г. Навашиным (1857---1930). В идиограмме хромосомы располагаются попарно в порядке убывающей величины (рис. 15). Исключение делается для половых хромосом, которые выделяются особо. Наиболее крупной паре хромосом присвоен № 1, сле­дующей — № 2 и т. д. Самая маленькая пара хромосом человека № 22. Как видно на идиограмме, пару половых хромосом женщины составляют две одинаковые крупные хромосомы, названные Х-хромосомами. У мужчин одна Х-хромосома такая же, как у женщин, а 'другая"— гораздо меньшая, У-хромосома.

Идентификация хромосом только по величине встречает большие затруднения: ряд хромосом имеет сходные размеры. Однако в последнее время разработаны новые методики для анализа хромосом: использование флюоресцент­ных красителей, окрашивание хромосом после специальной обработки краской Гимзы (названной так по имени автора) и применение других красителей. , Ними методами установлена четкая дифференцировка хромосом человека по их длине на красящиеся специальными методами и не красящиеся поло­сы. Рисунок этих полос строго специфичен, индивидуален для каждой пары хромосом (рис. 16). Умение точно дифференцировать хромосомы имеет боль­шое значение для медицинской генетики, так как позволяет точно установить характер нарушений в кариотипе пациента.

Постоянство числа, индивидуальность и сложность строения, авторепродукция и непрерывность в последовательных генерациях клеток говорят о большой биологической роли хромосом. Действительно хромосомы являются носителями наследственной информации (см. главу VI).

Выяснено, что наследственная информация дискретна, ее составляют многочисленные гены, расположенные вдоль хромосом в линейном по­рядке. Каждый ген занимает постоянное, определенное место (л о к у с) в определенной хромосоме.

Гомологичные хромосомы имеют один и тот же набор генетических локусов, поэтому взаимозаменяемы. Негомологичные хромосомы имеют раз­личные наборы генетических локусов, поэтому взаимонезаменяемы. Генети­ческая информация, необходимая для развития организма, содержится толь­ко в полном комплекте всех негомологичных хромосом (т. е. в полном гапло­идном наборе хромосом).


  1. Особенности строения генов у про- и эукариот. Строение хромосом в разные периоды жизненного цикла клетки.


Особенности строения генов у прокариотических и эукариотических клеток

Клетки в природе делятся на прокариотические и эукариотические. У прокариот ген имеет непрерывную структуру, т.е. представляет собой часть молекулы ДНК.

У эукариот ген состоит из чередующихся участков: экзонов и интронов. Экзон – информативный участок, интрон – неинформативный. Число интронов у разных генов неодинаково (от 1 до 50).

Разновидности генов

Наряду с приведенной ранее функциональной классификацией генов существуют и другие их разновидности: псевдогены, онкогены и мобильные гены.

Псевдогены (ложные гены) – нуклеотидные последовательности в молекуле ДНК, сходные по строению с известными генами, но утратившие функциональную активность.

Онкогены – нуклеотидные последовательности в молекуле ДНК, присутствующие в хромосомах нормальных клеток, способные активизироваться под влиянием факторов внешней среды и продуцировать белки, вызывающие рост опухолей.

Мобильные (прыгающие) гены – гены, не имеющие постоянной локализации не только в хромосоме, но и в пределах хромосомного набора клетки. Понятно, что перемещения генов влияют на их экспрессию – ранее не активные гены могут активизироваться, и наоборот. Некоторые ученые считают, что эти гены играют важную роль в эволюции. Видимо, возникновение таким путем отдельных видов (в результате переноса информации от вида к виду) действительно возможно.

В последние десятилетия в генетике появилось еще одно новое понятие – «семейство генов», или «мультигенное семейство». Это группа генов, имеющих сходное строение, общее происхождение и выполняющих сходные функции. Число генов в разных семействах может колебаться от нескольких единиц до нескольких тысяч.

У человека имеются семейства генов, кодирующие

  • α- и - глобиновые белки гемоглобина;

  • иммуноглобулины;

  • актины и миозины;

  • белки, определяющие тканевую несовместимость;

  • гистоновые белки.

Организация генов мультигенных семейств может быть разной. Так, семейства актиновых и миозиновых генов разбросаны по всему геному. Семейства генов, кодирующих - и - глобиновые белки, сосредоточены в одной хромосоме и образуют генные кластеры (так называют семейства генов, расположенных в одной хромосоме).

Генные кластеры возникли в результате дупликации (удвоения) отдельных генов. Таким образом, возникновение генных кластеров есть отражение эволюционного процесса.


Интерфазные хромосомы состоят из ДНК, белков(гистоновых и негистоновых), РНК, углеводов, липидов, ионов металлов. В интерфазе хромосомы максимально деспирализованы и представляют собой хроматин. 3 уровня компактизации хроматина:

1)нуклеосомная нить. Гистоновые белки образуют КОР из 8 молекул, напоминающий шайбу, вокруг каждого КОРа оборачивается молекула ДНК(2,5 оборота) – эта структура называется нуклеосома, а они образуют нить, напоминающую бусы

2) хроматиновая фибрилла – нуклеосомы сближаются при помощи гистонового белка и вся структура укладывается в спираль.

3)интерфазная – при помощи негистоновых белков хроматиновая фибрилла укладывается в петли, которые скручиваются между собой.

  1. Строение и функции ДНК. Биологическое значение авторепродукции ДНК. Генетический код. Кодовая система ДНК и белка.

Состоит из пятиуглеродного сахара – дезоксирибозы, одного из 4х азотистых оснований (аденин,гуанин,цитозин и тимин) и остатка фосфорной кислоты. Молекулы ДНК состоят из двух полинуклеотидный цепей. Они ориентированы так, что сахарофосфатные остовы оказываются снаружи, а азотистые основания – внутри. Основания располагаются напротив друг друга и соединены водородными связями. Соединяются только комплементарные друг с другом пары. А=Т, ГЦ. Состоит из 2х спиралевидных цепей.f:хранение, реализация и передача наследственной информации. Репликация ДНК носит полуконсервативный характер, т.к. в каждой новой молекуле ДНК одна из цепей материнская.

Биологический смысл репликации заключается в точной пе­редаче наследственной информации от материнской клетки к дочерним, что и происходит при делении соматических клеток. Самая важная особенность репликации ДНК — ее высо­кая точность.

Генетический код – принцип записи информации о последовательности аминокислот в полипептиде в виде последовательности нуклеотидов а молекулах РНК и ДНК. В ДНК или РНК имеется 4 виде нуклеотидов. Чтобы их закодировать, необходимо сочетание четырех видов нуклеотидов по три (43=64)

Три нуклеотида, образующие кодовый знак, называют триплетом. Триплеты в молекуле РНК называют кодонами, а комплементарные им триплеты молекул тРНК – антикодонами. Виды триплетов мРНК записываются в таблице. Из 64 триплетов 3 не кодируют аминокислот: УАА, УАГ, УГА. Это стоп-кодоны, прекращающие синтез полипептидной цепи. Остальные 61 триплет кодируют аминокислоты, причем триплет АУГ является стартовым кодоном: с него начинается трансляция. Таким образом, многие аминокислоты кодируются более чем одним кодоном; в этом смысле код является вырожденным. Генетический код универсален для клеток и вирусов.