ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.04.2024
Просмотров: 612
Скачиваний: 1
СОДЕРЖАНИЕ
Цитология. Размножение организмов. Онтогенез
Особенности строения генов у прокариотических и эукариотических клеток
Экспрессия (проявление действия) гена в процессе синтеза белк
Инициация – начало синтеза и-рнк.
14) Митоз, его биологическое значение. Эндомитоз, политения
16) Мейоз. Особенности первого и второго деления мейоза. Биологическое значение.
17) Оогенез, определение, схема. Цитологическая и цитогенетическая характеристика.
18) Сперматогенез, схема. Цитологическая и цитогенетическая характеристика
21) Механизмы регуляции развития на разных этапах онтогенеза. Эмбриональная индукция. Примеры.
22) . Механизмы регуляции эмбриогенеза. Гипотеза дифференциальной активности генов.
26) Смерть как заключительный этап онтогенеза. Клиническая и биологическая смерть. Реанимация.
28) Репаративная регенерация. Проявление регенерационной способности в фило- и онтогенезе
Факторы, определяющие репаративные способности разных видов
29) Формы репаративной регенерации. Способы ее осуществления. Примеры.
30) Механизмы регуляции регенерации. Методы стимуляции репаративной регенерации.
32) Биоритмы. Медицинское значение хронобиологии. Биологические ритмы
Функциональная классификация генов
Критические периоды эмбриогенеза
Признаки, характерные для родословной при аутосомно-доминантном типе наследования
Функциональная структура экосистемы:Абиотические факторы среды.
Природная очаговость нетрансмиссивных болезней
Профилактика паразитарных заболеваний
Профилактические мероприятия, направленные на источник инвазии:
Повышение невосприимчивости населения к возбудителям заболеваний
30) Механизмы регуляции регенерации. Методы стимуляции репаративной регенерации.
Регенерация – процесс восстановления живыми организмами снашиваемых или поврежденных биологических структур. Синоним – репарация.
Регенерация имеет как биологическое, так и медицинское значение.
С точки зрения биологии, регенерация носит приспособительный характер.
Любое заболевание сопровождается повреждением биологических структур, выздоровление – их регенерацией.
Регуляция восстановительных процессов осуществляется на всех уровнях биологической организации организма. Выделяют следующие виды регуляторных механизмов:
внутриклеточные и внутритканевые,
гормональные,
нервные,
функциональные,
межорганные.
Внутриклеточные и внутритканевые.
Размножение клеток в ткани сдерживается веществами кейлонами (гликопротеидами). При повреждении образуются антикейлоны, нейтрализующие действие кейлонов, что ведет к размножению клеток. Кроме того, продукты распада поврежденных клеток обладают стимулирующим действием – оказывают влияние на неповрежденные клетки, заставляя их размножаться.
Гормональные механизмы. В экспериментах было установлено влияние на процессы репарации гормонов гипофиза, щитовидной железы, надпочечников, половых желез, поджелудочной железы.
Нервные механизмы. Нервная система выполняет трофическую функцию: в нервных окончаниях вырабатывается нейротрофический фактор, стимулирующий процессы регенерации.
Функциональные механизмы. В поврежденном органе или ткани оставшиеся клетки всегда будут испытывать возросшую физиологическую нагрузку. Это приводит к усилению обменных процессов в клетке, что, в свою очередь, повлечет внутриклеточную регенерацию или размножение клеток.
Межорганные механизмы обеспечиваются вовлечением в восстановительный процесс различных органов при участии нервной и эндокринной систем.
Стимуляция репаративных процессов
Можно ли усилить репаративные способности организма? Да, можно. Сегодня известно много способов стимуляции репаративных процессов.
Методы стимуляции регенерации: локального действия
- физические (механическое повреждение)
- химические (химические вещества)
- биологические (биологические ткани)
- метод протезов (временные и постоянные)
общего действия на организм
С этой целью используются различные БАВ, лекарственные препараты, диета. Так, применение фетальной сыворотки в эксперименте ускоряло процесс сращения трубчатых костей. Гормоны многих эндокринных желез также ускоряют репаративные процессы. Большое влияние на течение регенерации оказывает диета.
31) Понятие о гомеостазе. Структурный и физиологический гомеостаз. Механизмы поддержания гомеостаза в многоклеточном организме. Роль нервной и эндокринной систем в обеспечении постоянства внутренней среды
Гомеостаз – постоянство внутренней среды живых организмов, которое они поддерживают, несмотря на изменение условий окружающей среды.
Гомеостаз в живом организме проявляется в относительном постоянстве таких показателей, как рН, осмотическое давление, химический состав крови, артериальное давление, температура, постоянстве биологических структур. Необходимость гомеостаза объясняется тем, что все биохимические реакции могут протекать в строго определенных условиях (температура, рН, давление). Французский ученый Клод Бернар писал: «Постоянство внутренней среды – условие независимого существования организма». Гомеостаз на уровне целостного организма может быть функциональным (постоянство функций) и структурным (постоянство структур).Постоянство показателей внутренней среды организма носит относительный характер, т.к. всегда имеются небольшие отклонения от нормы. Эти колебания необходимы для того, чтобы служить сигналами для включения регуляторных механизмов.Механизмы регуляции гомеостаза имеют место на всех уровнях биологической организации: от молекулярно-генетического до организменного. Они многообразны, однако работают слаженно, т.к. контролируются регуляторными системами: нервной, эндокринной, иммунной. Таким образом, механизмы регуляции гомеостаза носят системный характер.В основе любого заболевания лежит нарушение гомеостаза, а лечение – его восстановление.
Кибернетика – наука, устанавливающая общие принципы управления саморегулирующимися системами. Живые организмы также являются саморегулирующимися системами, и поэтому к ним применимы все кибернетические понятия и принципы регуляции.
В основе работы кибернетической системы лежит процесс передачи и обработки информации. В работу системы постоянно вносятся коррективы, характер которых зависит от тех отклонений, которые наблюдаются на входе. Для живых организмов входными сигналами служат пища, вода, свет, звук, температура. Выходные сигналы – реакция органа или ткани, выделение секрета и т.д. Важным элементом кибернетической системы является обратная связь – влияние выходного сигнала на блок управления. Различают отрицательную и положительную обратную связь. Отрицательная обратная связь – направлена на восстановление исходного состояния кибернетической системы, в случае ее отклонения от нормы. Пример: кровь из пальца.
Положительная обратная связь – направлена на усиление возникшего отклонения кибернетической системы от исходного состояния. Пример: кровотечение из крупного сосуда, рост организма в онтогенезе.
Нервная регуляция: высокая скорость наступления ответной реакции; реакция кратковременная;реакция носит локальный характер.
Гуморальная регуляция(обеспечивается выделением в кровь гормонов):реакция наступает медленно;реакция длительна;реакция носит разлитой характер.
Таким образом, обе системы в целостном организме дополняют друг друга.В основе функционирования нервной и эндокринной систем лежит принцип действия отрицательной обратной связи.
Рассмотрим работу нервной системы на примере регуляции рН крови:
Рассмотрим примеры работы эндокринной системы
Взаимодействие нервной и эндокринной систем можно рассмотреть на примере стрессовой реакции организма (реакции на сильный или длительный по времени действия раздражитель):
32) Биоритмы. Медицинское значение хронобиологии. Биологические ритмы
Все живые организмы наряду с пространственной организацией имеют временную характеристику. Деятельность всех систем организма представлена в виде отдельных замкнутых циклов, например, дыхание: вдох – выдох, 12-14 раз в минуту; сердечный цикл: систола – диастола, 0,8 секунд; перистальтика желудка: одно сокращение длится от нескольких десятков минут до 1-1,5 часов. Установлено, что ритмичность протекания многих функций организма находится в тесной связи с колебаниями во внешней среде: смена дня и ночи, времена года, изменение солнечной активности, вращение луны и т.д.
Ритмичность протекания процессов жизнедеятельности в живых организмах – биоритмы.
Наука, занимающаяся изучением биоритмов, называется хронобиология.
Классификация биоритмов
По частоте возникновения ритма:
ритмы высокой частоты (от долей секунды до 30 минут),
ритмы средней частоты (30 минут – 28 часов),
мезоритмы (28 часов – 6 дней),
макроритмы (20дней – 1 год),
мегаритмы (10 лет – несколько десятков лет).
По уровню организации биосистемы:
клеточные (химические реакции),
органнные ритмы,
организменные,
популяционные.
С точки зрения взаимодействия организма с окружающей средой:
а) физиологические (рабочие) – колебания, отражающие деятельность отдельных систем организма (сокращение сердца, дыхание, перистальтика и т.п.),
б) адаптивные (собственно биоритмы) – колебания с периодами, близкими к основным геофизическим циклам, направлены на приспособление к периодически изменяющимся условиям среды.
Адаптивные биоритмы
Подразделяются на:
суточные;
лунные;
годичные (сезонные);
приливно-отливные;
солнечные.
Медицинское значение хронобиологии
1. Суточные ритмы должны учитываться при назначении сильнодействующих лекарств. Одна и та же доза в разное время суток действует по-разному. Например, оптимальное время приема аспирина в 8 часов утра, т.к. при этом его отрицательное влияние на желудок минимально. Анальгин при зубной боли желательно принимать в 15 часов дня, т.к. в этом случае он действует в три раза дольше. Гормоны кортикостероиды при лечении бронхиальной астмы следует назначать в 8 и 15 часов.
2. Время суток и дни месяца надо учитывать при проведении плановых операций, т.к. длительность кровотечения разная.
3. Циркадные ритмы следует учитывать при направлении больных на санаторно-курортное лечение.
4. Сезонные ритмы принимаются во внимание при лечении хронических больных: весной и осенью необходимо проводить профилактическое лечение.
5. Суточные ритмы учитываются при составлении режима труда и отдыха для людей ряда профессий: летчики, космонавты и т.п.
Генетика
Значение генетики для медицины. Медико-генетическое консультирование населения.
Генетика тесно связана с медициной. В настоящее время известно более 2-х тыс наследственных болезней и аномалий развития. Они изучаются на молекулярном, клеточном, организменном и популяционном уровнях. Генетикой получены важные сведения о том, что наследственные болезни в определенных условиях могут не проявляться, могут быть даны рекомендации по их предотвращению.
Медицинская генетика – это раздел генетики человека, который изучает генетические причины заболеваний человека, разрабатывает методы диагностики, профилактики и лечения наследственной патологии.
Медико-генетическое консультирование включает четыре этапа:
1.Установление диагноза наследственного заболевания. На этом этапе врач использует все доступные и необходимые методы исследования.
2. На втором этапе определяется генетический риск рождения больного ребенка. Риск рождения ребенка с любыми наследственными аномалиями в здоровой супружеской паре составляет в среднем 1-2%, что определяется случайными генеративными мутациями. Эта величина называется неспецифическим общепопуляционным риском. Обратившихся в консультацию интересует больше специфический риск – это риск рождения ребенка с определенным наследственным заболеванием, уже встречавшимся в семье.
3. На третьем этапе врач в доступной форме сообщает семье сведения о величине риска и оказывает помощь в принятии решения относительно деторождения.
4. На четвертом, заключительном этапе проводится оценка эффективности медико-генетического консультирования в ходе дальнейшего наблюдения за семьей.
Современное определение гена. Классификация, свойства и функции генов. Количественная и качественная специфика проявления генов в признаки: пенетрантность, экспрессивность, генокопии. Примеры.
Ген – часть молекулы ДНК, имеющая определенную последовательность нуклеотидов и представляющая собой функциональную единицу наследственного материала