ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.02.2019
Просмотров: 1266
Скачиваний: 1
-
Графическое представление статистических данных.
Статистический график – чертеж, на котором стат.совокупности, характеризуемые определенными показателями описываются с помощью условных геометрических образов или знаков. При построении графика необходимо соблюдать требования: наглядность, выразительность, понятность. Поле графика – часть плоскости, где расположены графические образы. Виды графиков: линейные, столбиковые, полосовые, круговые, секторные, фигурные, точечные, объемные, применяются диаграммы и стат.карты. Картограмма – схематическая географическая карта, на которой выделены отрасли промышленности или структура состава населения.
-
Статистические ряды распределения, их виды.
Статистический ряд распределения - упорядоченное распределение единиц совокупности на группы по определенному признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.
Ряды распределения, построенные по атрибутивным (качественным) признакам, называются атрибутивными (распределение населения по полу, занятости, национальности, профессии и т.д.).
Ряды распределения, построенные по количественному признаку, называются вариационными (распределение населения по возрасту, рабочих – по стажу работы, зарплате и т.д.). Вариационные ряды распределения состоят из двух элементов: вариантов и частот. Варианты – отдельные значения признака, которые он принимает в ряду. Частоты – это численность отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности. Частости – это частоты, выраженные в долях единиц или в % к итогу.
Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные. Дискретные вариационные ряды основаны на дискретных (прерывных) признаках, имеющих только целые значения, на дискретных признаках, представленных в виде интервалов. Интервальные вариационные ряды основаны на непрерывных признаках (имеющих любые значения, даже дробные).
-
Основные характеристики ряда распределения, их роль в анализе структуры совокупности.
Статистический ряд распределения - упорядоченное распределение единиц совокупности на группы по определенному признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.
Ряды распределения, построенные по атрибутивным (качественным) признакам, называются атрибутивными (распределение населения по полу, занятости, национальности, профессии и т.д.).
Ряды распределения, построенные по количественному признаку, называются вариационными (распределение населения по возрасту, рабочих – по стажу работы, зарплате и т.д.). Вариационные ряды распределения состоят из двух элементов: вариантов и частот. Варианты – отдельные значения признака, которые он принимает в ряду. Частоты – это численность отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности. Частости – это частоты, выраженные в долях единиц или в % к итогу.
Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные. Дискретные вариационные ряды основаны на дискретных (прерывных) признаках, имеющих только целые значения, на дискретных признаках, представленных в виде интервалов. Интервальные вариационные ряды основаны на непрерывных признаках (имеющих любые значения, даже дробные).
-
Средняя величина в статистике, её сущность и условия применения. Виды и формы средних.
Средняя величина – обобщенная количественная характеристика признака в статистической совокупности, конкретных условиях места и времени.
Свойство средней: средняя отражает то общее, что присуще всем единицам исследуемой совокупности.
Сущность средних: в средней величине взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов.
При расчете средней необходимо соблюдать следующие условия: 1) расчет надо вести только однородных по качеству совокупностей, для этого надо сочетать метод средних и метод группировок; 2) общее среднее необходимо дополнять групповыми средними и индивидуальными величинами; 3) для расчета средней нужна масса единиц (20-30); 4) необходимо правильно выбирать единицу совокупности средних.
В каждом конкретном случае применяется одна из средних величин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д.
Средняя арифметическая применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Чтобы рассчитать среднюю арифметическую, нужно сумму всех значений признаков разделить на их число х – значения признака, n – число вариант. xср.= ∑x/n
Если частоты неравны, то применяется формула средней ариф.взвешанной, х – значения признака, f - веса средней или частота. Xвзв.= ∑xf/∑f
Средняя гармоническая применяется, когда частоты неизвестны, а известны варианты и производные показатели, х – значения признака, М-веса средней. xср.=n/∑1/x
Xвзв.= ∑xf/∑xf/x
-
Виды и характеристика степенных средних. Их характеристика.
Средней величиной называется статистический показатель, который дает обобщенную характеристику варьирующего признака однородных единиц совокупности.
Величина средней дает обобщающую количественную характеристику всей совокупности и характеризует ее в отношении данного признака.
Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения вызванные основным фактором.
Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:
-
В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.
-
Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.
Виды средних величин
Средние величины делятся на два больших класса: степенные средние и структурные средние
Степенные средние:
Степенные
средние в зависимости от представления
исходных данных могут быть простыми
и взвешенными.
Если
вариант
встречается
один раз, расчеты проводим по средней
простой (например зарплата в 3 тыс.руб.
встречается только у одного рабочего),
а если вариант повторяется неодинаковое
число раз, то есть имеет
разные частоты
(например
зарплата в 4 тыс.рублей встречается у
пяти работников), то расчет проводим по
средней взвешенной.
Формула степенной простой в общем виде
где:
-
— индивидуальное значение признака -й единицы совокупности
-
— показатель степени средней величины
-
— число единиц совокупности
Формула степенной средней взвещенной в общем виде
где:
-
— частота повторения -й варианты.
-
В зависимости от того, какое значение принимает показатель степени средней величины , получаем различные виды средних:
-
-
Виды и характеристика структурны средних. Их характеристика.
Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние – мода (Мо) и медиана (Ме).
Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле
где х0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; fm_1 – частота предшествующего интервала; fm+1 – частота следующего интервала.
Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.
Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.
При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле
где X0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; f– число членов ряда;
m-1 – сумма накопленных членов ряда, предшествующих данному.
Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили – на 10 равных частей. Квартилей насчитывается три, а децилей – девять.
Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.
-
Ряды динамики, их виды и особенности, графическое изображение.
Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, т.е. их динамика. Эта задачи решается при помощи анализа рядов динамики (временных рядов). Ряд динамики (динамический ряд) представляет собой ряд расположенных в хронологической последовательности числовых значений статистического показателя, характеризующих изменение общественных явлений во времени. В каждом ряду динамики имеются два основных элемента: время t и конкретное значение показателя (уровень ряда) у. Уровни ряда – это показатели, числовые значения которых составляют динамический ряд. Время t – это моменты или периоды, к которым относятся уровни. Построение и анализ рядов динамики позволяют выявить и измерить закономерности развития общественных явлений во времени. Эти закономерности не проявляются четко на каждом конкретном уровне, а лишь в тенденции, в достаточно длительной динамике. На основную закономерность динамики накладываются другие, прежде всего случайные, иногда сезонные влияния. Выявление основной тенденции в изменении уровней, именуемой трендом, является одной из главных задач анализа рядов динамики. По времени, отраженному в динамических рядах, они разделяются на моментные и интервальные. Моментным рядом динамики называется такой ряд, уровни которого характеризуют состояние явления на определенные даты (моменты времени). Поскольку в каждом последующем уровне содержится полностью или частично значения предыдущего уровня, суммировать уровни моментного ряда не следует, т.к. это приводит к повторному счету. Интервальным (периодическим) рядом динамики называется такой ряд, уровни которого характеризуют размер явлений за конкретный период времени (год, квартал, месяц). Значения уровней интервального ряда не содержатся в предыдущих или последующих показателях, их можно просуммировать, что позволяет получать ряды динамики более укрупненных периодов. Интервальный ряд, где последовательные уровни могут суммироваться, можно представить как ряд с нарастающими итогами. При построении таких рядов производится последовательное суммирование смежных уровней. Этим достигается суммарное обобщение результата развития изучаемого явления с начала отчетного периода. Уровни в динамическом ряду могут быть представлены абсолютными, средними или относительными величинами.. По расстоянию между уровнями ряды динамики подразделяются на ряды с равностоящими и неравностоящими уровнями по времени. .Ряды динамики могут быть изображены графически. Графическое изображение позволяет наглядно представить развитие явления во времени и способствует проведению анализа уровней. Наиболее распространенным видом графического изображения для аналитических целей является линейная диаграмма, которая строится в прямоугольной системе координат: на оси абсцисс отмечается время, а на оси ординат – уровни ряда. Наряду с линейной диаграммой для графического изображения рядов динамики в целях популяризации широко используются столбиковая диаграмма, секторная диаграмма и т.д