Файл: Обучение критическому мышлению в средних классах.docx

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 134

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Приложение 1

8 класс. Окружность. Взаимное расположение прямой и окружности.

Главная дидактическая цель урока: Добиться умения самостоятельно формулировать определения понятий: окружность, радиус, диаметр, хорда каждым учащимся.

Цели урока:

Изучить возможности взаимного расположения прямой и окружности.

Способствовать формированию приёмов критического мышления, анализа и синтеза

Воспитание коммуникативной культуры, приобретение опыта самостоятельной работы.

 ЭТАПЫ УРОКА

ЗАДАЧИ ЭТАПА

ИНСТРУКЦИЯ ПО ВЫПОЛНЕНИЮ

РЕЗУЛЬТАТ

1. Орг. этап.


Подготовить уч-ся к работе на уроке.

Приветствие.

Организация внимания.

 

2. Подготовка к изучению нового материала.


Организация познавательной деятельности уч-ся.

Сообщить тему урока.

Игра “Верю-не верю ”.

Какова, ребята, по вашему мнению, будет цель нашего урока?

В тетради число и тема урока.

Сформулировать цель урока.

3. Усвоение новых знаний.

(сам – но)


Дать конкретное представление об изучаемых понятиях.

Сформулировать их определение.

Проанализировать связь между ними.

1.Читайте текст лист №1 .

2.Что нового вы узнали? Сравнили с ответами “верю-не верю” в начале урока.

3.Составьте таблицу вопросов по тексту.

4. Обменяйтесь вопросами и ответами с соседом.

5.Работайте с таблицей лист №2. Используя опорные слова, сформулируйте определения, обсудите их с соседом по парте.

6.Практическая работа лист №3

Выполнить и сделать выводы.

В тетради таблица вопросов.

В тетради записаны определения окружности, радиуса, хорды диаметра,

Практическая работа в тетради. Вывод.

4. Проверка понимания нового материала

(Фронт.)

Осмысление новых понятий и закономерностей.

Устранить обнаруженные пробелы.

Обсуждаем с классом выполненные задания, определения и выводы.

 

Знакомимся с материалом в учебнике

В тетради устранены возникшие пробелы

5. Закрепление

(Самостоятельная работа)


Закрепить знания и умения по новому материалу.

1.Задача:

2..Составьте свою задачу на взаимное расположение прямой и окружности.

Ответ с объяснением в тетради.

6. Подведение итогов


Сообщить д\з.

Подвести итоги.

Что нового узнали на уроке?

Как вы понимаете эпиграф перед текстом на листе.

Оцените свою работу: …- всё понял и могу рассказать. …-всё понял , но рассказать не могу. …-.понял не всё.



Воспроизвести изучаемые понятия.

Выставить отметки уч-ся правильно отвечающим на уроке.



Игра “Верю-не верю” (ОКРУЖНОСТЬ)

Цель игры: Вызвать интерес к изучению темы “окружность”, создать положительную мотивацию самостоятельного изучения текста по теме.

Проводится в начале урока, после сообщения темы.


Вопрос

“+” верю,

“-” неверю

1. Верите ли вы, что самая простая из кривых линий – окружность?

 

2. Верите ли вы, что древние индийцы считали самым важным элементом окружности радиус, хотя не знали такого слова?

 

3. Верите ли вы, что впервые термин “радиус” встречается лишь в 16 веке?

 

4. Верите ли вы, что в переводе с латинского радиус означает “луч”?

 

5. Верите ли вы, что при заданном периметре именно окружность ограничивает наибольшую площадь?

 

6. Верите ли вы, что в русском языке слово “круглый” означает высшую степень чего-либо?

 

7. Верите ли вы, что выражение “ходить по кругу” когда-то означало “прогресс”?

 

8. Верите ли вы, что хорда в переводе с греческого означает “струна”?

 

9. Верите ли вы, что определение “касательной” уже есть в первом учебнике геометрии - “Начала” Евклида?

 


Далее предлагается текст.

ЛИСТ №1

“Ни 30 лет, ни 30 столетий не оказывают никакого влияния на ясность или на красоту геометрических истин”. Кэрролл Л.

Самая простая из кривых линий – окружность. Это одна из древнейших геометрических фигур. Ещё вавилоняне и древние индийцы считали самым важным элементом окружности – радиус. Слово это латинское и означает “луч”. В древности не было этого термина: Евклид и другие учёные говорили просто “прямая из центра”, Ф. Виет писал что “радиус” - это “элегантное слово”. Общепринятым термин “радиус” становится лишь в конце XVII в. Впервые термин “радиус” встречается в “Геометрии” французского ученого Рамса, изданной в 1569 году.

В Древней Греции круг и окружность считались венцом совершенства. Действительно в каждой своей точке окружность “устроена” одинаково, что позволяет ей как бы двигаться “по себе”. На плоскости этим свойством обладает еще лишь прямая. Одно из интереснейших свойств круга состоит в том, что он при заданном периметре ограничивает максимальную площадь.



В русском языке слово “круглый” тоже стало означать высокую степень чего-либо: “круглый отличник”, “круглый сирота” и даже “круглый дурак”.

Если вы когда-либо пробовали получить информацию от бюрократической организации, вас, скорее всего “погоняли по кругу”. Фраза “ходить по кругу” обычно не ассоциируется с прогрессом. Но в период индустриальной революции, выражение “ходить по кругу” очень точно отражало прогресс. Шкивы и механизмы давали машинам возможность увеличить производительность и значит сократить рабочую неделю.

Без понятия круга и окружности было бы трудно говорить о круговращении жизни. Круги повсюду вокруг нас. Окружности и циклы идут, взявшись за руки. Циклы получаются при движении по кругу. Мы изучаем циклы земли, они помогают нам разобраться, когда надо сажать растения и когда мы должны вставать.

Представление об окружности даёт линия движения модели самолёта, прикреплённого шнуром к руке человека, также обод колеса, спицы которого соответствуют радиусам окружности.

Термин “хорда” (от греческого “струна”) был введён в современном смысле европейскими учёными в XII-XIII веках.

Определение касательной как прямой, имеющей с окружностью только одну общую точку, встречается впервые в учебнике “Элементы геометрии” французского математика Лежандра (1752-1833 гг.). В “Началах” Евклида даётся следующее определение: прямая касается круга, если она встречает круг, но при продолжении не пересекает его

По материалам книг: Г. Глейзер “История математики в школе”, С Акимова “Занимательная математика”.

Прочитав текст, составьте в тетради таблицу вопросов по нему, так чтобы вопрос начинался с указанного слова.

Что?

Кто?

Где?

Когда?

Почему?

Зачем?

 

 

 

 

 

 


ЛИСТ №2

Изучив таблицу, сформулируйте геометрические определения понятий, используя ключевые слова.




рисунок

Определяемое понятие

Используемые ключевые понятия

1



Окружность

Точки плоскости, одинаковое расстояние, точка - центр.

2



радиус

Точки окружности, центр окружности, отрезок.

3



Хорда

Отрезок, точки окружности.

4



Диаметр

Хорда окружности, центр окружности.


ЛИСТ №3

ПРАКТИЧЕСКАЯ РАБОТА. Рассмотрите прямую m, точку М вне её и отрезок МК.

П остройте в тетради три окружности с центром в точке М:

1. Радиус окружности r < MK

2. Радиус окружности r = MK

3. Радиус окружности r >MK
Дайте определение расстояния от точки до прямой: Расстояние от точки до прямой – это

Радиус окружности меньше расстояния от центра окружности до прямой

Радиус окружности больше расстояния от центра окружности до прямой

Радиус окружности равен расстоянию от центра окружности до прямой

Прямая и окружность ……….

Прямая и окружность ……….

Прямая и окружность ……….

Сделайте вывод о взаимном расположении прямой и окружности, в зависимости от радиуса и расстояния от центра до прямой.

Обсудите свои выводы с товарищем по парте.

Урок закончен.


Приложение 2

Фрагмент урока . 6 класс. Действия с дробями

…Задание 1.

Прочитайте дроби:

1,2; 8/15; 6/7; 0,04; 1целая 2/9; 1,875; 7/4.

Укажите среди них обыкновенные, десятичные дроби. Чем различается запись десятичных и обыкновенных дробей? Что показывает числитель и знаменатель обыкновенной дроби? Какая обыкновенная дробь называется правильной, неправильной?

Обратите данные обыкновенные дроби в десятичные, а десятичные - в обыкновенные:

0,1; 1,6; ½; ¼; 1 целая 1/5; 5.

3. Сравните произведения чисел

1/5 * 0,4; -1/5 * 0,2; 2 целая ½ * 2,25.

Назовите числа, обратные и противоположные данным:

5/7; 4/13; 1 целая 1/3; 0,3; 12; 1,05.

Чему равна сумма противоположных чисел? Чему равно произведение взаимно – обратных чисел?

Сравните с единицей сумму дробей:

¼+1/4+1/4; 1/10+0,2 + ½.

Фронтальная работа класса продолжается в ходе составления карты путешествия.

Составление карты идет так же, как игра в лото. На доске укреплен лист ватмана, разделенный на шесть равных частей. На каждой части крупно нарисовано число (оно будет фигурировать в ответах к математическому лото). А на столе учителя лежат тыльной стороной шесть квадратов таких же по размеру, как и квадраты на вывешенном разграфленном листе. На каждом квадрате с лицевой стороны нарисован участок карты, а на тыльной - одно из шести чисел, изображенных на разграфленном листе.

Задание 2.

Математическое лото. Выполните действия:

А) - 1/10 + 0,5; Б) -2: (-0,2);

В) 0,4 * 2 целых1/2; Г) -1 целая ½ - 10/5;

Д) 3 целых ½ - 0,5; Е) -1/3: 0,2.

Учащиеся выполняют задания, а затем учитель медленно объявляет ответы. Тот, кто первым объявил, что в его работе есть правильный ответ, выходит к доске.

Учитель дает ему квадрат, на одной стороне которого зафиксирован правильный ответ, а на другой нарисована часть карты. Ученик прикрепляет этот квадрат (Рисунком наружу) на большой лист. Карта состоит из 6 квадратов: цветочная поляна с тремя дорогами, озеро, мельница, пещера, снова цветочная поляна и дракон. Звучит куплет из «Бременских музыкантов»:

Ничего на свете лучше нету,

Чем бродить друзьям по белу свету.

Тем, кто дружен, не страшны тревоги.

Нам любые дороги дороги,

Нам любые дороги дороги.

Объявляю, что путешествие начинается с цветочной поляны. Красота цветов обманчива. Среди них могут быть и ядовитые и целебные. Задача - не ошибиться при сборе букета.

Задание 3.

На доске нарисованы цветы, на лепестках написаны дроби. Эти дроби