Файл: Сборник методических пособий.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.11.2023

Просмотров: 405

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Рисунок 4 – Схема закрепления кольца с некруглой

ε3

Рисунок 17--Схема образования погрешности закрепления

Тогда

Поэтому и для технологической системы необходимо, чтобы

Рисунок 45

3.5.3 Задание к лабораторной работе

3.5.5 Методика и порядок выполнения лабораторной работы

3.5.9 Литература

1. Дальский А.М. Технологическое обеспечение надёжности высокоточных деталей машин. М. Маш. 1975. 224с.

3. Ящерицын П.И., Рыжов Э.В., Аверченков В.И. технологическая наследственность в машиностроении. М. НиТ. 1977.

4. Проников А.С. Надёжность машин. М. Маш. 1978. 591с.

5. Когаев В.П., Дроздов Ю.Н. прочность и износостойкость деталей машин. М. ВШ.1991.319с.

6. Аристов А.В. управление качеством. М. Инфра М. 2000. 238с.

3.6.2.2 Погрешности, связанные с тепловыми деформациями технологических систем

Рисунок 56 – Круглограммы формы центрового отверстия (1) и формы наружной поверхности (2) изделия в сечении центрового отверстия после шлифования в центрах

Рисунок 73

Рисунок 88 – Циклический

граф технологического

наследования

3.11.2.2 Виды и характеристики изнашиванияВ процессе трения и износа, деталей машин протекают сложные, взаимосвязанные физические, химические, и механические явления. Изучением природы механизма изнашивания, кинетики развития процесса поверхностного разрушения в различных аспектах занимаются специалисты фундаментальных наук физики, химии, механики математики материаловедения, инженеры и техники. Особенность методического подхода к анализу изнашивания заключается в тесном взаимодействии экспериментальных и теоретических методов.Рассмотрим основные виды изнашивания и условия их реализации. Абразивное изнашивание относится к механическому разрушению трущихся поверхностей, возникающему в результате режущего или царапающего действия твердых тел и частиц. В процессе абразивного изнашивания могут иметь место хрупкое разрушение, квазихрупкое при микропластической деформации и вязкое разрушение. Поверхностное разрушение может происходить при однократном и многократном пластическом деформировании. Характерным условием абразивного изнашивания является повышенная твердость изнашивающего тела―частицы минерального происхождений, шероховатости более твердой поверхности, наклепанные металлические частицы износа, твердые структурные составляющие материала, оксидные пленки. Проявляется влияние химической природы абразива и изнашиваемого материала, а также адгезионного взаимодействия, например при обработке материала абразивным инструментом. Твердые частицы имеют различные форму грани, ориентацию к изнашиваемой поверхности. На изнашивающейся поверхности остаются следы (риски, канавки, царапины) как результат микрорезания, снятия стружки, пластического деформирования. Абразивное воздействие оказывают твердые частицы в потоке жидкости, газа, воздуха при попадании на твердое тело. Возникновение трения и удара в месте контакта приводят к ударно-абразивному, ударно-гидроабразивному, ударно-усталостному, ударно-тепловому разрушению.Абразивная износостойкость зависит от прочности межатомных связей в решетке. Экспериментально установлено влияние модуля нормальной упругости, параметра θ2А (где θ – характеристическая температура по Дебаю; А – атомный вес), теплосодержания расплавленного металла, отношения абсолютной температуры плавления к атомному объему, энергии активации W, самодиффузии Q; ε E1.3 (рис. 87).Здесь ε – относительная износостойкость испытуемого матери­ала и материала, принятого за эталон, в одинаковых условиях эксперимента. Рисунок 95 – Зависимость относительной износостойкости от параметра для чистых металловХарактеристической (дебаевской) температурой называется величина , h – постоянная Планка; наибольшая частота упру­гих колебаний атомов в кристаллической решетке; k – постоянная Больцмана. При температурах, значительно меньших дебаевской θ, теплоемкость кристаллической решетки пропорциональна кубу температуры.М. М. Хрущевым получена зависимость для оценки объема износа V в зависимости от нормальной нагрузки N, пути трения S, начальной твердости металла Н, размера абразивного зерна, , где с – коэффициент, зависящий от абразивных свойств истирающей поверхности, условий взаимодействия контактирующих тел, кинематики движения и закрепления абразива, остроты ребер абразива. Обратная пропорциональность величины износа числу твердости относится к технически чистым металлам и сталям в отожженном состоянии.Износ линейно возрастает с ростом размера зерна только до некоторой его критической величины, затем при увеличении размера не изменяется. Особенно большое значение имеет размер зерна при изнашивании полимеров в связи с их низкой когезионной прочностью. В механически наклепанных металлах и сталях, если в процессе наклепа не происходит фазовых превращений, относительная износостойкость не зависит от твердости стали после наклепа, так как в процессе самого изнашивания имеет место значительный наклеп. Скорость скольжения, если не приводит к заметному нагреву контакта, мало влияет на величину износа. Рисунок 96--Зависимость относительной износостойкости и относительного износа от отношения твердости абразива твердостиметалла . Характерные области I, II, III.Относительная износостойкость зависит от соотношения твердостей абразива и металла . При в диапазоне k=0.7…1 износ незначительный, при в диапазоне k=1.3…1.7 относительная износостойкость сталей, кроме сталей Гадфилъда, не зависит от твердости абразива. В переходной области износ металла возрастает с повышением твердости абразива (рисунок 95).Абразивное изнашивание имеет место в сельскохозяйственных, горных, дорожных, строительных, транспортных, металлургических и в других машинах. Коррозионно-механическое изнашивание возникает при трении материалов, вступающих в химическое взаимодействие с окружающей средой. Могут иметь место также электрические процессы. Изнашивание в этом случае происходит под влиянием одновременно протекающих процессов поверхностного разрушения от механического и коррозионного факторов. Интенсивность коррозионно-механического изнашивания зависит от природы контактирующих материалов, их коррозионной стойкости, состава окружающей среды, от взаимодействия материалов со средой, смазочными материалами, с активными компонентами (присадками).Правильный подбор реакционноспособной присадки в смазочном материале, образующей металлоорганические соединения, содержащие серу, хлор, фосфор, йод, а также обеспечение условий химического модифицирования в различных режимах трения представляют сложную экспериментально-теоретическую задачу. Существует оптимум количества применяемом присадки, отклонение от которого приводит к повышению интенсивности изнашивания. Оксидные пленки на трущимся поверхностях ослабляют схватывание, уменьшают трение и износ. Интенсивность изнашивания (окислительного) зависит от толщины и прочности оксидной пленки. Структура, состав, защитные свойства ее зависят от температуры, контактного давления, временного фактора. Трение сопровождается активацией поверхностных слоев материалов, повышает способность к адсорбции, диффузии, химическим реакциям, к пассивации материалов. В зависимости от условий трения и со­става окружающей среды, например, на железе могут образоваться пленки . Образование и разрушение вторичных структур сопровождается деформированием и активацией поверхностных слоев.От соотношения скоростей разрушения и восстановления оксидных пленок зависят интенсивность и механизм поверхностного разрушения. При высоких скоростях разрушения оксидных слоев образуются физически чистые (ювенильные) поверхности, имеющие повышенную, склонность к схватыванию и быстрому разрушению.Существенно влияет на процесс изнашивания водород. Он выделяется из материалов трущихся тел, смазочных материалов, топлива, паров воды, пластмасс, окружающей среды и увеличивает интенсивность изнашивания. Возникает охрупчивание и образуется мелкодисперсный порошок. Большие градиенты напряжений и температур в приповерхностных слоях металла при трении способствуют повышенной концентрации водорода в зоне трения, образованию и развитию микротрещин, охрупчиванию и интенсивному изнашиванию. Работа узлов трения в агрессивных средах, в электролитах сопровождается коррозионными процессами, анодным растворением, переходом ионов атомов металла из решетки в раствор. Электрохимические процессы, развивающиеся на фактических площадях контакта, зависят от разрушения и восстановления пассивирующих пленок. Коррозионно-механические процессы могут иметь доминирующее значение при кавитационном и эрозионном разрушениях, вызванных микроударным воздействием жидкостей.Существует связь между свойствами, составом и структурой различных химических соединений, возникающих в контакте, с противоизносными, противозадирными, антифрикционными свойствами присадок, использующихся в смазочных материалах. Эффект взаимодействия зависит от адсорбционных свойств присадок, каталитического действия трущихся поверхностей, температурного интервала действия присадок.Для легких режимов трения целесообразно использовать присадки с повышенной адсорбируемостью. При ужесточении режимов трения эффективны присадки с повышенной реакционной способностью, образующие химически модифицированные слои при трении. Нагрузка, температура, свойства окружающей среды существенно влияют на химический состав, свойства поверхностных, соединений. Химическое модифицирование поверхности трения как по скорости протекания процесса, так и по глубине проникновения в приповерхностные слои материала зависит от адсорбционных свойств присадок, концентрации активных компонентов соединений на поверхности твердого тела. Интенсивность изнашивания и механизм поверхностного разрушения зависят от свойств модифицированного поверхностного слоя, а вид изнашивания может изменяться в процессе работы узла трения, особенно в нестационарных условиях. Необходимо учитывать адсорбционные и коррозионные эффекты при оценке влияния присадок на износ. Образование прочных адсорбционных слоев, экранирующее действие смазки препятствуют непосредственному контакту микронеровностей трущихся поверхностей и снижают адгезионное взаимодействие. Однако возможное снижение механических свойств поверхностных и приповерхностных слоев в результате химического модифицирования вызывает усиление коррозионно-механического изнашивания.Высокая активность вновь образованной поверхности при срезе частиц материала приводит к образованию физической адсорбции, хемосорбции, химических соединений. Работами Н. Сода и Т. Сасада показано значение времени процесса существования срезанного участка и хемосорбции кислорода с атомами металла. Среднее свободное время между образованием мостиков сварки можно оценить по формуле ,где – радиус круга мостика сварки; Н – твердость более мягкого материала;р – среднее контактное давление; – скорость скольжения. Установлена связь интенсивности изнашивания и времени для образования на поверхности металлов хемсорбированных молекул газа. Время пребывания молекулы в адсорбционном центре оценивается по формуле Я.И. Френкеля где – период колебаний адсорбированной молекулы в нормальном к поверхности направлении;Q – теплота адсорбции;R – универсальная газовая постоянная; Т – абсолютная температура поверхности.Существует зависимость противоизносных свойств с теплотой адсорбции смазочного материала. Для качественной оценки доли дефекта смазочного слоя , где – общее число адсорбционных центров, используется уравнение Кингсбюри где z – путь перемещения между адсорбированными молекулами; vs – скорость скольжения.Несущая способность граничных смазочных слоев зависит от прочности их адсорбционной связи с поверхностью твердого тела, когезионных свойств граничных слоев. Противозадирные, противоизносные, антифрикционные свойства контакта зависят от физико-химических и механических свойств модифицированных слоев. Поверхностно-активные элементы смазочного материала влияют на развитие поверхностных дислокаций, могут снижать поверхностную энергию, прочность, увеличивать контактную деформацию. Коррозионно-механическое изнашивание весьма типично для различных узлов машин, особенно для машин, аппаратов, оборудования нефтехимической, пищевой, горно-металлургической, деревообрабатывающей, микробиологической промышленности. Для уменьшения эффекта коррозии используют углеродные материалы, искусственные графиты, полимеры с наполнителями, нержавеющие стали и сплавы, материалы неметаллической группы. Адгезионное изнашивание возникает вследствие действия межповерхностных сил, молекулярного сцепления на поверхности раздела, образования адгезионных связей между касающимися поверхностями. Под адгезией понимают слипание соприкасающихся поверхностей разнородных твердых или жидких тел. Адгезионные взаимодействия вызывают подповерхностное разрушение трущихся материалов, появление заедания, возникновение "холодной сварки", повышенные значения интенсивности изнашивания и сил трения. Сила адгезионного взаимодействия зависит от степени очистки поверхностей от адсорбированных слоев, загрязнений, наличия смазочных веществ. Проблема адгезионного взаимодействия является центральной в науке о трении и износе твердых тел—металлов, полимеров, керамики, композитов, полупроводников.На площадках фактического контакта трущихся поверхностей под воздействием нормальных и тангенциальных усилий, температур, деформационных процессов происходит разрушение всех экранирующих слоев (смазки, загрязнений, адсорбированных веществ, оксидов), возникает контакт атомарно-чистых поверхностей. Механизм адгезии связан с особенностями электронного строения контактирующих тел, концентрации валентных электронов, плотности свободных электронов на поверхности раздела.Энергия атомных связей, распределение атомов в поверхностных слоях, структура поверхности, дефекты кристаллической решетки определяют условия адгезионного взаимодействия. Эксперименты показали неоднозначную корреляцию адгезии с твердостью, модулем упругости, температурой плавления, кристаллической структурой, поверхностной энергией, скрытой теплотой плавления, размерами атомов.Отсутствие удовлетворительной теории адгезии не позволяет в настоящее время расчетным путем прогнозировать силу адгезионного взаимодействия при трении.Степень адгезионного взаимодействия в некоторых случаях зависит от поверхностной энергии твердых тел, т. е. работы, необходимой для создания новых поверхностей. Для приближенной оценки поверхностной энергии используется уравнение , где Е – модуль упругости; у0 — расстояние между взаимодействующими плоскостями спайности; а0— радиус действия межатомных сил притяжения.Энергию адгезии Еа можно представить как половину энергии, необходимой для удаления друг от друга контактирующих двух твердых тел: , где – поверхностная энергия тел 1,2; Ек– энергия контакта, вызванная существованием поверхности раздела. Делаются попытки осуществления качественной оценки энергии поверхности, контакта и адгезии на основе численного решения интегрального уравнения Шредингера.Сила адгезионного взаимодействия зависит от суммарной площади фактического контакта, на которой действуют поверхностные силы, от влияния упругих напряжений и деформаций на разрушение адгезионных связей, при разделении контакта, от упрутопластических контактных деформаций. Адгезия меньше у металлов с гексагональной кристаллической структурой и с плотной упаковкой атомов по сравнению с металлами с объемно центрированной и гранецентрированной кристаллическими решетками. Легирующие элементы (углерод, сера) уменьшают адгезионный износ.В композиционных материалах изнашивание зависит от ориентации волокон в матрице. Меньший адгезионный износ возникает при направлении волокон, перпендикулярном направлению скольжения, и при ориентации волокон торцами к трущимся поверхностям.Деформация и износ трущихся приповерхностных слоев способствуют разрушению промежуточных защитных слоев. Сдвиговая прочность в месте контакта является существенно переменной величиной, зависящей от состояния промежуточных пленок, способности к упрочнению, хрупкости и пластичности материалов. При реализации сдвига непосредственно на поверхности раздела адгезионный износ незначительный. Если адгезионное соединение в контакте прочнее менее прочного материала, то происходит когезионное разрушение материала. Под когезией понимается притяжение между частицами одного и того же твердого тела (или жидкости). В зависимости от силы адгезионного взаимодействия интенсивность изнашивания может изменяться на 4...8 порядков и более, в то же время коэффициент трения колеблется в пределах одного порядка.Согласно модели Д. Арчарда, объемный износ V на пути трения скольжения 5 при адгезионном взаимодействии зависит от фактической площади контакта Аг. Площадь контакта двух микронеровностей как единичного события представляет собой круг радиуса а. На пути скольжения образуется полусферическая частица радиуса а с объемом или где Аr – площадь фактического контакта двух микронеровностей. Износ V, приходящийся на единицу пути трения скольжения, S, можно выразить формулой , где – коэффициент, характеризующий вероятность образования частицы износа в данном событии. Фактическая площадь контакта Аr в зависимости от вида деформации является функцией нормальной нагрузки N. Для упругой деформации ; для пластической – – , где Е – модуль упругости; – предел текучести.Для приближенной оценки объемного адгезионного износа V используется уравнение Арчарда: ,где k – коэффициент адгезионного износа; Н – твердость более мягкого материала. Обычно пластическая деформация шероховатостей имеет место при начальном касании тел. Последующие условия контактирования приводят к упругопластическим и к упругим деформациям. Значение износа зависит не только от нагрузки, твердости и пути трения, но и от топографии поверхностей, действующих температур, физико-механических свойств Приповерхностных слоев, смазочных материалов, окружающей среды и других факторов.Для приближенной оценки объема адгезионного износа V в условиях граничной смазки можно воспользоваться формулой Роу: где – коэффициент износа; f – коэффициент трения; H – твердость более мягкого материала; Vs – скорость скольжения; da – диаметр (площади влияния) адсорбированной молекулы; t0 – период колебания адсорбированной молекулы; Q – теплота адсорбции; R – газовая постоянная; Т – абсолютная темпера­тура в контакте поверхностей.Адгезионное изнашивание часто возникает при недостаточ­ном количестве и при отсутствии смазочного материала, в случаях разрушения загрязнений, адсорбированных пленок, оксидов. В практике встречается во многих узлах трения—опорах скольжениями качения, в зубчатых передачах, муфтах, направляющих, кулачковых механизмах, при механической обработке материалов. Особенно адгезионный износ опасен для космической техники, вакуумного оборудования, механизмов атомных реакторов и других высоконагруженных узлов, функционирующих в газовых и жидких агрессивных средах.Усталостное изнашивание возникает в результате повторного деформирования микрообъемов материала, вызывающего возникновение трещин и отделение частиц материала. Циклически изменяющиеся контактные напряжения вызывают поверхностное разрушение в виде ямок выкрашивания (питтинг) трещин, осповидного изнашивания, отслаивания. Образующиеся раковинки с диаметром от сотых долей миллиметра до нескольких иллиметров увеличиваются в процессе работы узла трения, возникает шелушение поверхности. Количественная оценка контактной усталости выражается в числе циклов нагружения или в часах работы до возникновения усталостных разрушений поверхностей. Появление усталостного изнашивания—выкрашивания—приводит к усилению вибрационно-акустической ак­тивности механизмов, повышению уровня шума, увеличению концентрации нагрузки, контактных напряжений, уменьшению размера площади несущей поверхности трущихся поверхностей, возникновению интенсивного износа и заедания. Условия возникновения и кинетика развития усталостного изнашивания зависят от напряженного и деформированного состояния поверхностных и приповерхностных слоев материала, физико-механических свойств материала, физико-химических свойств смазочных материалов и окружающей среды, толщины смазочного слоя, кинематики контакта, формы и размеров соприкасающихся деталей. Упругое контактное макродеформирозание материалов сопровождается появлением микропластических деформаций в микрообъемах.Возникновению микротрещин при циклических контактных воздействиях способствует влияние концентраторов напряжений. К поверхностным концентраторам напряжений относятся дефекты в виде царапин, вмятин, рисок, прижогов и др. Подповерхностные концентраторы напряжений—неметаллические включения, микропоры, раковины, карбиды и др. Большое влияние оказывают значения максимальных касательных напряжений. Первичная трещина чаще возникает на поверхности контакта, но может зарождаться и в приповерхностных слоях материала.Скорость развития усталостного изнашивания зависит от многих факторов—механических свойств материала, физико-механических свойств поверхности, качества обработки поверхности, остаточных напряжений в приповерхностных и поверхностных слоях материалов, от концентрации напряжений, степени приработки, частоты изменения напряжений, уровня температуры, химической активности окружающей среды и др. Увеличение коэффициента трения скольжения способствует возникновению выкрашивания. С ростом толщины смазочного слоя уменьшаются число взаимодействующих микронеровностей, продолжительность и величина деформирования, предотвращается металлический контакт. Условиями появления выкрашивания, связанными с пластическими деформациями, можно объяснить положительное влияние повышенных значений пределов упругости, текучести, вязкости материала, твердости несущей области материала, а также ведущее значение дислокационных процессов — образование пустот, слияние дислокаций вдоль плоскостей скольжения или спайности.В начальный период работы сопряжений может возникнуть ограниченное выкрашивание, зависящее от концентрации нагрузки на отдельных участках или неровностях. В результате последующей приработки распределение нагрузки становится более равномерным и выкрашивание прекращается.Фрикционно-усталостная модель изнашивания была развита И. В. Крагельским, в ней учитываются процессы на уровне влияния микрогеометрии (шероховатостей) поверхностей. При относительном скольжении трущихся тел разрушение происходит в результате многократного деформирования истираемого материала жесткими микронеровностями контотела. Уравнение И. В. Крагельского для фрикционной усталости где h/R – относительная глубина внедрения (h – глубина внедрения единичной неровности; R – радиус неровности); ра и рr – соответственно номинальное и фактическое давления;k1 – коэффициент, зависящий от расположения неровностей по высоте; α* – отношение номинальной площади к площади трения; n – число циклов, которое выдерживает деформированный объем до разрушения.При скольжении тел процесс накопления повреждений имеетопределенную стадийность. Вначале происходит накоплениеупругих искажений решетки и увеличивается плотность дислокаций. После достижения критической плотности дислокаций возникают субмикроскопические трещины. Вместе с необратимыми искажениями кристаллической решетки нарушаются межатомные связи и разрушаются отдельные микрообъемы. Теория износа отслаиванием, разработанная Н. Су, исходит из следующих концепций. Тангенциальное усилие передается между поверхностями адгезнонным и пропахивающим действием. Под поверхностная пластическая деформация накапливается при многократных проходах неровностей, при этом образуются трещины и пустоты в под поверхностных слоях металла, происходит их рост и слияние. Процесс отслаивания рассматривается как кумулятивный. Под действием каждой проходящей неровности происходит некоторый сдвиг материала. Лепестки износа возникают после прохождения достаточно большого числа неровностей.В некоторых условиях эксплуатации развиваются глубинные усталостные трещины, вызывающие отслаивание. Трещины возникают под упрочненным поверхностным слоем и при этом отделяются крупные частицы разрушенного материала, уменьшается площадь контактирующей поверхности, возникают концентраторы напряжения. Интенсивность дальнейшего изнашивания в связи с этим резко увеличивается. В этих случаях несущая способность контакта увеличивается с ростом упрочненного слоя и твердости материала, лежащего пол этим слоем.Усталостное разрушение поверхностных слоев материалов в виде выкрашивания возникает в хорошо смазывающихся механизмах, трущиеся сопряжения которых работают в режимах кинематического качения, скольжения, качения со скольжением. Наиболее подвержены контактному разрушению в виде выкрашивания зубчатые передачи, подшипники качения и скольжения, катки, кулачковые механизмы, фрикционные передачи и др. Следует отметить, что усталостные процессы разрушения обычно сопутствуют различным видам изнашивания, так как переменные во времени напряжения имеют место при различных видах трения и приводят к усталостным разрушениям.Изнашивание при фреттинг-коррозии возникает при малых колебательных, циклических, возвратно-поступательных перемещениях с малыми амплитудами. Необходимым условием возникновения фреттинг-коррозии является наличие проскальзывания между касающимися поверхностями. Фреттинг-коррозия возникает в заклепочных болтовых, шлицевых, шпоночных, штифтовых соединениях, прессовых посадках деталей, стальных канатах, шарнирах, соединениях муфт, рессорах, клапанах регуяяторах электрических контактов, кулачковых механизмах, элементах ядерных реакторов; несущих системах вертолетов и самолетов, деталях газотурбинных двигателей. Активизирует этот, процесс наличие вибраций, переменных во времени крутящих и изгибающих моментов. Повреждения концентрируются на небольших участках и напоминают точечную коррозию. Повышается величина шероховатостей, образуются натиры, налипания, каверны, микротрещины, при этом обычно снижается усталостная: прочность деталей. Порошкообразные продукты изнашивания представляют собой обычно оксиды, которые, если могут иметь выход из области контакта, приводят к ослаблению натяга, плотности соединения, увеличению вибраций, попадают в другие трущиеся сопряжения и обладают абразивным действием. Объем продуктов изнашивания при фреттинг-коррозии обычно повышает объем изношенного металла перешедшего в оксидное состояние. Если частицы износа не имеют выхода из зоны контакта, то в системе возникает повышенное расклинивающее действие. В результате возможны возникновение заедания, заклинивание механизма, аварийная ситуация, например в предохранительных клапанах, регуляторах, переключателях и реле.В зависимости от условий нагружения, кинематики контакта, свойств материала, коррозионной активности окружающей среды может изменяться доминирующий механизм поверхностного разрушения. Вначале разрушаются оксидные пленки, Отслаиваются тонкие чешуйки металла, усиливается адгезионное взаимодействие поверхностей. Происходит адгезионно-усталостное изнашивание при одновременном коррозионном воздействии среды. Стадийность фреттинг-коррозии включает упрочнение микровыступов взаимодействующих поверхностей в местах фактического контакта. Разрушение оксидных слоев, межатомное взаимодействие физически чистых поверхностей приводят к микросхватыванию. Продукты износа образуются вследствие разрушения узлов схватывания и усталостного повреждения микронеровностей. Одновременно в подповерхностных слоях накапливаются усталостные повреждения, усиливаются коррозионные процессы формируется коррозионно-активная среда. В заключительной стадии фреттинг-коррозии преобладают коррозионно-усталостные разрушения, приводящие к ускоренному изнашиванию. Интенсивность разрушения поверхностей зависит от склонности к разупрочнению поверхностных слоев, к их разрыхлению вследствие электрохимического, коррозионно-усталостного, знакопеременного, циклического деформирования. Изнашивание при фреттинг-коррозии зависит от одновременно протекающих процессов микросхватывания, усталостного, коррозионнр-механического, абразивного воздействия.С ростом удельной контактной нагрузки может изменяться характер повреждения материала от адрстно-коррозионного до возникновения схватывания, взаимного переноса металла. С ростом числа циклов нагружения, объем удаленного материала увеличивается. Повышение амплитуды проскальзывания вызывает усиленное изнашивание, особенно в области амплитуд, превышающих 0,10...0,15мм. При малых амплитудах частицы износа (оксиды) могут играть роль тел качения и предохранять от повышенного-изнашивания, при больших амплитудах перемещения возможно возникновение у очагов схватывания Частота колебаний изменяет скорость проскальзывания в контакте, период цикла, контактную температуру. Большее разрушение поверхности и характерно для низких частот колебаний. В обычной атмосфере с, повышением частоты колебаний, износ сначала убывает, затем остается постоянным. При низких частотах увеличивается время действия химических процессов. Коррозионная активность окружающей среды существенно влияет на интенсивность изнашивания. Например износ в воздушной среде и в среде кислорода выше, чем в вакууме, азоте, гелии. Разрушение открытых поверхностей идет более интенсивно в зимнее время. По мере снижения отрицательных температур изнашивание усиливается. Повышение контактных удельных нагрузок, амплитуд перемещений, скоростей скольжения уменьшение теплопроводности материалов увеличивает местные контактные температуры без заметного общего нагрева узла трения. Повышенное значение температур в местах фактического контакта шероховатостей, механическая активация материалов приводят к процессу схватывания. Однако влияние температуры вследствие изменения скорости образования оксидных пленок на износ неоднозначно.Расчетные зависимости для определения износа в условиях феттинг-коррозии имеют весьма приближенный, оценочный характер.Для уменьшения износа используют смазочные материалы, в которых кислород имеет низкую растворимость, с пониженным коэффициентом диффузии, с высокой противоокислительной стабильностью, с повышенными адгезионными, адсорбционными свойствами к контактирующим поверхностям. Нанесение неметаллических покрытий, использование прокладок, коррозионно-стойких материалов уменьшает интенсивность изнашивания. Правильный выбор материалов деталей должен сочетаться с учетом уровня контактных нагружений, амплитуд перемещений, с видом смазочного материала и характером окружающей среды. Ресурс работы сопряжения при фреттинг-коррозии зависит также от сопротивляемости материала абразивному, усталостному, коррозионному разрушению, от его ударно-вязкостных свойств. Существенное влияние имеют структура материала и склонность к схватыванию. Механизм возникновения - и кинетика развития изнашивания поверхностей в условиях фреттинг-коррозии являются наиболее сложными по своей природе процессами.Эрозионное изнашивание происходит в результате воздействия на поверхность потока жидкости, газа, твердых частиц. С удалением поверхностных локальных микрообъемов при повторных воздействия частиц возникают неровности и огрубление поверхности Интенсивность эрозионного разрушения зависит от прочности когезионных связей в материале энергия выделяющаяся в момент соударения частиц с поверхностью, сможет, вызвать частичное оплавление места контакта. Эрозия при воздействии воды происходит, вследствие, трения потока поверхность и от ударного воздействия частиц потока при этом сможет иметь место, процесс электрохимической коррозии, поэтому во многих случаях эрозионное изнашивание сопровождается коррозионно-механическими разрушениями. Интенсивность эрозионного изнашивания зависит от скорости потока, угла атаки с изнашивающейся поверхностью, механических свойств и концентрации воздействующих частиц, агрессивности среды – носителя, физико-механических и химических свойств поверхностных и приповерхностных слоев материала. Отмечают эрозионное разрушение при гидроабразивном и газоабразивном воздействии среды. Гидроабразивное изнашивание имеет место в различных деталях гидромашин, патрубков, землесосов, турбобуров и др. Воздействующими факторами являются абразивные частицы и поток жидкости, несущий твердые частицы. Механическое воздействие твердых частиц может сочетаться с коррозионным и кавитационным разрушением. При возникновении ядер кавитации в потоке жидкости вследствие существования микрообъемов воздуха, пузырьков возможна реализация двух механизмов разрушения – гидроабразивного и кавитационного. Оценивается зависимость кавитационного износа от скорости потока жидкости показателем степени при скорости 6...14, абразивного износа – около 2. Во времени абразивный износ развивается приблизительно линейно, кавитационный – в существенно нелинейной зависимости. Инкубационный период, характерный для кавитационного разрушения при абразивном изнашивании, отсутствует. На гидроабразивный износ влияют также соотношение значений твердости материала и абразива, величина угла атаки.Газоабразивное изнашивание происходит в результате воздействия твердых частиц, увлекаемых газовым потоком. Газоабразивное изнашивание типично для газовых турбин, доменного производства, газодобывающих агрегатов, оборудования, устройств пневмотранспорта и др. Главными факторами влияния в этом случае являются скорость потока абразивных частиц угол атаки, свойства и концентрация абразива, физико-химические характеристики среды- Зависимость газоабразивного износа материала от относительной твердости абразива (абразивных зерен) имеет 5-образный вид: нижняя часть относится к соотношению твердости абразива к твердости материала Hм, т.е. верхняя зона начинается при Величина износа являётся функцией подводимой энергий твердыми частицами к местам контакта с поверхностью твердого тела и имеет абразивно усталостную природу. Предельное накопление энергии в материале до его разрушения зависит от физико-механических свойств материала, структурного и фазового состояния, сопротивления материала возникновению пластической деформации и хрупкому разрушению. Необходимо учитывать при подборе материалов возможное коррозионное воздействие газовой среды и электрохимические процессы при взаимодействии среды и частиц. Повышение износостойкости за счет увеличения твердости может быть получено путем легирования, химико-термической и физической (лазерной, плазменной и др.) обработками поверхности, но не путем повышения твердости материала наклепыванием.Эрозионный вид изнашивания может возникать также в результате воздействия разрядов при прохождении электрического тока.Кавитационное изнашивание возникает при относительном движении твердого тела и жидкости в условиях кавитации. Кавитационный износ типичен для деталей машин, работающих в жидких средах.Процесс образования гидродинамической кавитации связан с возникновением каверн-кавитационных пузырьков. Основные действующие факторы при кавитации имеют, различную природу значительные локальные механические силы, химические тепловые, электрические и другие процессы. Механизм и кинетика кавитационного изнашивания стадийный, включает процесс зарождения и роста кавитационных каверн, их захлопывание (схлопывание), разрушительное воздействие на поверхность. Для образования каверн в жидкости необходимо падение давления в ней до давления насыщенных паров. Ядра кавитации в области разрежения жидкости превращаются в кавитационные пузырьки каверны. В момент достижения предельного размера кавитационные пузырьки (каверны) начинают захлопываться, вследствие чего поверхность твердого тела в зоне кавитации подает механическое повреждение. Возникают; ударные волны на поверхностях деталей. Кавитационный износ: (кавитационная эрозия) металлических тел имеет вид, выдавленных кратеров, периодически образующихся в процессе работы деталей.Частота образования, каверн при условии сохранения их изнашивающего воздействия характеризуется критерием Струхаля , где Н – число, каверн, возникающих в секунду; d – характерный размер тела; v – скорость потока жидкости.Деформирование и диспергирование, изнашивающегося материала возникают при захлопывании каверн в результате ударного воздействия на стенку. В момент удара сжатие жидкости и ее поведение подобно твердому телу, отвердение жидкости протекает в миллионные доли секунды, затем следует период растекания жидкости на твердой стенке. Кавитационное изнашивание зависит от условий зарождения и увеличения кавитационных каверн, процесса захлопывания каверн и интенсивности кавитационных ударов, от свойств материалов и покрытий, от кинематических и динамических параметров потока. Местные неровности, волнистости, шероховатости, выступы способствуют возникновению процесса кавитации и изнашиванию. Значительное влияние на кавитационный износ оказывают скорость потока жидкости и вибрация контактирующих с жидкостью деталей (вибрационная кавитация), вменением физико-механических свойств жидкости, вязкости, пряности тела, поверхностного натяжения, температуры можно повлиять на интенсивность кавитационного изнашивания. Сверхразвитая кавитация (суперкавитация) перестает изнашивать поверхности. Кавитационному изнашиванию подвержены различные детали гидромашин, рабочие колеса насосов, гребных винтов, лопасти гидротурбин. В описании механизма процесса кавитационного изнашивания весьма перспективны кумулятивно-релаксационные модели разрушения твердых тел.Изнашивание при заедании является наиболее опасным разрушением трущихся поверхностей, возникающим в результате схватывания, глубинного вырывания материала, переноса материала с одной поверхности трения на другую, разрушающего воздействия образовавшихся неровностей. Заедание появляется в виде глубоких борозд, выровов, наростов, рисок, оплавлений. Изнашивание при заедании может иметь лавинный, катастрофический характер и приводить к полному выходу узла трения из строя. Заедание имеет место в тяжелонагруженных зубчатых передачах, кулачковых механизмах, шарнирных соединениях, подшипниковых опорах, в цилиндропоршневых парах, золотниковых устройствах, в направляющих станков, в стационарных контактах при наличии вибраций. Условия возникновения и кинетика развития изнашивания при заедании зависят от напряженно-деформированного состояния контакта, кинематики движения (качение, скольжение, качение со скольжением), температурного состояния, физико-механических и химических свойств контактирующих тел, характеристик смазочных материалов, окружающей среды, количества и качества присадок к основному маслу, способа смазки, шероховатости контактирующих поверхностей, других факторов. Обязательным условием возникновения заедания является разрушение промежуточных и взаимодействие физически чистых (ювенильных) контактирующих поверхностей. Разрушение защитных смазочных слоев может наступить вследствие пластической деформации, износа шероховатостей, находящихся даже в «холодном» состоянии, или вследствие потери смазывающих свойств (деградации) смазочного материала при повышенных фактических температурах в зонах фактического контакта тел. Заедание возможно в результате срабатывания смазочного материала и при недостаточном его дополнительном поступлении к местам трения.На процесс "холодного" заедания, встречающийся в тихоходных механизмах и стационарных контактах, влияют степень дискретности контакта, износостойкость защитных слоев пластичность контакта, склонность к образованию адгезионных связей. Возникновению "горячего" заедания способствуют факторы, приводящие к росту контактной температуры. Заеданию предшествуют процесс разрушения оксидных слоев и адсорбированных пленок, механотермическая активация поверхностных слоев материала.В случае невысоких контактных температур, деформационного упрочнения узлов схватывания и повышенной их прочности (по сравнению с прочностью исходного материала) разрушение поверхности происходит в менее прочном материале. Возникают задир и повышенный износ. Увеличение температуры контактирующих поверхностей приводит к размягчению материала, частичному удалению поверхностных пленок росту фактической площади контакта, к повышению склонности поверхностей к схватыванию. Принципиальное значение при этом имеет скорость процесса разрушения и образования защитных поверхностных слоев. Сближение атомов контактирующих материалов на расстояние межатомных взаимодействий, электронный обмен приводят к образованию узлов схватывания, возникновению прочных химических связей. Механические свойства узлов схватывания (мостиков сварки) зависят от процессов рекристаллизации, диффузии, релаксации напряжений. Рекристаллизация приводит к образованию общих зерен в местах контакта, диффузионные процессы сопровождают упрочнение, разупрочнение, охрупчивание материалов. Пластическая деформация, предшествующая заеданию, активирует поверхности трения при этом возникают неравновесное электронное состояние, активированное состояние атомов поверхностей. Указанные факторы способствуют образованию узлов схватывания и развитию изнашивания в условиях заедания. В момент возникновения заедания, как правило, резко увеличивается коэффициент трения скольжения (для тихоходных и среднескоростных трущихся тел), растет температура, в механизмах развиваются динамические процессы, повышается виброакустическая активность. В момент возникновения заедания, как правило, резко увеличивается коэффициент трения скольжения (для тихоходных и среднескоростных трущихся тел), растет температура, в механизмах развиваются динамические процессы, повышается виброакустическая активность. В случае высоких скоростей, мощных контактных тепловых источников возникают интенсивная пластическая деформация поверхностных слоев и их оплавление. Катастрофически быстрое изнашивание трущихся тел протекает без заметного увеличения или при уменьшенном коэффициенте трения скольжения, который соответствует контактно-гидродинамическому режиму смазки. Метод прогнозирования условий возникновения заедания на этапе проектирования узлов трения основываются на следующих критериях.Критерий Г. Блока основывается на гипотезе о существовании критической температуры разрушения смазочного слоя, характерной для каждой комбинации материалов и масла. Температура в контакте рассчитывается как сумма объемной температуры тел перед входом в контакт и мгновенного повышения температуры в контакте, возникающий в процессе трения тел,―температурной вспышки . Температура определяется экспериментально или рассчитывается на основе рассмотрения теплового баланса узла трения. Температурную вспышку для катящихся со скольжением цилиндрических тел находят по формуле ,где – коэффициент трения скольжения; – погонная (удельная) нагрузка; – скорости качения поверхностей; – коэффициенты теплопроводности материалов поверхностей; – плотности материалов поверхностей; с1, с2 – удельные теплоемкости материалов поверхностей;b – полуширина площадки контакта, рассчитанной по Герцу. Условие отсутствия возникновения, заедания по Г. Блоку, где – суммарная критическая температура, при которой происходит заедание поверхностей. На основе анализа экспериментально-расчетных данных для различных условий трения, материалов, смазочных сред

ρ размера определяется как ρ=β∆tсрD, где β – коэффициент линейного расширения; ∆tср – средняя избыточная температура по сечению обрабатываемой заготовки, ºC; D – диаметр заготовки, м.

Принятое допущение приемлемо для деталей обычной точности, для случаев шлифования шеек; равноудаленных от торцов шлифуемого вала. Расчёт ∆tср даже в этом случае представляется достаточно сложным. Для оценки точности обработки высокоточных деталей такие допущения оказываются грубыми. Практика это полностью подтверждает. На рисунке 50 показан результат экспериментов, проведенных в лаборатории станков и технологии Высшей технической школы в Аахене.

П ри врезном шлифовании цилиндрических стальных заготовок диаметром 30 и длиной 60 мм с v=28м/с и s=0,8мм/мин условия нагрева в разных поперечных сечениях оказываются различными. Теплоотдача у торцов значительно больше, чем в середине заготовки. В результате этого температурные деформации в середине оказываются большими (рисунок 50), чем у торцов, что появляется на остывшей детали в виде нецилиндричности h. Этот эффект, естественно, зависит от расхода охлаждающей жидкости Qохл.ж. Верхняя кривая на рисунке 50 показывает общее отклонение формы (Собщ), а также среднюю температуру заготовки (tзаг). Величина Собщ учитывает все прочие особенности проведения процесса. При изоляции торцов заготовки тонкой пластмассовой плёнкой теплоотвод по сравнению с первым вариантом шлифования был нарушен. Деталь не имела “корсетной” формы, а её конусность объяснялась различной жёсткостью опор. Таким образом, отклонение формы готовой детали является функцией её длины, диаметра, конструктивного оформления торцов и других особенностей конфигурации.

В случае врезного шлифования заготовку нагревают но всей длине. Задача значительно усложняется, если в процессе обработки нагрев неравномерен. Для деталей типа пластин в таком случае имеется ряд решений. Расчёты производят приближёнными методами для шарнирного опирания, заделки или свободного края. Во многих схемах базирования, особенно при финишной обработке, заготовки типа пластин закрепляют на упругих рёбрах, жёсткость которых необходимо учитывать.

Опытами, проведёнными в Высшей технической школе г. Магдебурга, установлено влияние неравномерности нагрева корпусных деталей на их точность. Такой нагрев возникает в процессе обработки, в частности при растачивании отверстий. Он приводит, как правило, к потере их соосности. Упругий поворот отдельных элементов корпусных деталей определённым образом связывается с их конструктивным оформлением и схемой обработки. Из четырёх схем обработки, показанных на рисунке 51, лучшими оказываются схемы
I и II, так как здесь происходит симметричное тепловое нагружение стенок.

Задачи, связанные с технологической наследственностью конструктивных форм заготовок в связи с изменением их температуры, относятся к категории весьма сложных. Их решение позволит избавиться во многих случаях от трудоёмких операций, связанных с доводкой высокоточных деталей.
3.6.3 Задание к лабораторной работе
Ознакомиться с основными особенностями влияния температуры деталей при обработке тепловых деформаций и геометрических погрешностей станков на точность обрабатываемых деталей. Выявить основные особенности и закономерности этого влияния и наметить пути к повышению качества выпускаемых изделий.

Задание к лабораторной работе (п.3) и указание на особенность её выполнения дополняются пояснениями преподавателя.
3.6.4 Техническое оснащение лабораторной работы
Специального технического оснащения не требуется.
3.6.5 Методика и порядок выполнения работы
Лабораторная работа выполняется в качестве деловой игры, в которой группа студентов делится на представителей потребителя, который представляет интересы заказчика изделия, его уровень качества; на представителей разработчика конструкции изделия конструкторскими способами; на представителей технологических служб завода изготовителя и организатора службы эксплуатации, сервиса, ремонта; на представителей участников других стадий производственного цикла изделия. В виде деловой игры группа студентов решает все вопросы обеспечения качества, пользуясь основными положениями, изложенными в данной лабораторной работе и в сборнике в целом. Разработанные рекомендации, полученные на основе анализа теоретических и практических данных составляют основу отчёта.
3.6.6 Контрольные вопросы
1) Связь характера нагрева заготовок при обработке с особенностями их конструктивных форм.

2) Технологическое наследование конструктивных форм деталей.

3) Причины неравномерного нагрева заготовок при механической обработке.

4) Способы уменьшения нагрева деталей при механической обработке.

5) Тепловое воздействие на технологическую систему. Тепловые деформации металлорежущих станков.



6) Влияние тепловых деформаций станков на точность обрабатываемых деталей.

7) Тепловое равновесие технологической системы и время его достижения.

8) Тепловые деформации станка, заготовки и режущего инструмента.

9) Особенности тепловых воздействий на качество обработки высокоточных деталей.

10) Виды погрешностей деталей в связи с особенностями их типа при тепловых деформациях при обработке.
3.6.7 Техника безопасности
Данная лабораторная работа выполняется в аудитории и не требует особых мер безопасности.
3.6.8 Требования к отчёту
Отчёт содержит ответы на контрольные вопросы и предложения по обеспечению качества выпускаемых изделий, полученных в деловой игре.

3.6.9 Литература
1. Дальский А.М. Технологическое обеспечение надежности высокоточных деталей машин. М. Маш. 1975. 224с.

2. Дальский А.М., Базров Б.М., Васильев А.С., Дмитриев А.М., Колесников А.Г., Кондаков А.И., Шачнев Ю.А.. Технологическая наследственность в машиностроительном производстве. М. Изд. МАИ. 2000. 360с.

3. Дальский А.М. (под редакцией). Технология машиностроения. В 2-х томах. 1 т. Основы технологии машиностроения. М.МГТУ им. Н.Э.Баумана. 1977. 563с.

4. Ящерицы П.И., Рыжов Э.В., Аверченков В.И. Технологическая наследственность в машиностроении. М. НиТ. 1977.

5. Когаев В.П., Дроздов Ю.Н. Прочность и износостойкость деталей машин. М. ВШ. 1991. ,319с.

6. Проников А.С. Надежность машин. М. Маш. 1978. 591с.

7. Аристов А.В. Управление качеством. М. Инфра М. 2000. 238с


Лабораторная работа 3.7 "Исследование закономерностей технологического наследования погрешностей технологических баз"
3.7.1 Цель и задачи лабораторной работы
3.7.1.1Цель лабораторной работы:

Дать студентам знания основных закономерностей технологического наследования, в том числе наследования погрешностей установочных баз обрабатываемых деталей.

3.7.1.2 Задачи лабораторной работы: научить студентов определять погрешности установочных баз и обработанных поверхностей (при обработке с использованием данных установочных баз). Проводить анализ и определять влияние погрешностей установочных баз на характер погрешностей обработанных деталей.


3.7.1.3 После выполнения лабораторной работы студент должен

знать: основные закономерности технологического наследования при механической обработке деталей, характер переноса (наследования) погрешностей установочных баз на обрабатываемые поверхности деталей;

уметь: обеспечивать условия получения наименьших погрешностей установочных баз и обрабатываемых деталей, т.е. управлять качеством обрабатываемых деталей технологическими методами с использованием положений технологической наследственности.
3.7.2 Основные теоретические положения
3.7.2.1 Технологическое наследование погрешностей установочных баз
При обработке деталей обычной точности установочные базы рассматриваются как геометрически правильные элементы – чаще всего плоские или цилиндрические (круговой цилиндр) поверхности. Более детальное рассмотрение формы поверхностей установочных баз приводит к выводу об ошибочности такого допущения в случае обработки высокоточных деталей. Одними из наиболее распространенных являются установочные базы в виде центровых отверстий. Установлено, что центровые отверстия, как правило, на конической поверхности имеют несколько выступов (волн), так что при обработке центр токарного или шлифовального станка контактирует лишь с этими выступами. Следствием этого является переменная жесткость системы центр - заготовка по углу поворота последней. Погрешности установочных баз наследуются и переносятся на обрабатываемую поверхность детали. Об этом свидетельствуют полученные круглограммы (рисунок 52). Величина отклонений формы зависит от количества выступов центрового отверстия и величин силы резания. Существует несколько причин возникновения выступов на центровых отверстиях. Помимо образования волнистости из-за специфических условий резания следует отметить еще две причины. При центровании коротких заготовок податливость шпиндельных узлов подавляющего большинства металлорежущих станков не остается постоянной по углу поворота. Изменение податливости можно выразить зависимостью, близкой к синусоидальной. В случае вращения заготовок большой длины координаты их центра тяжести могут меняться. Возникает поворот оси шпинделя относительно некоторой неподвижной точки. При этом появляется прецессия оси вращающейся заготовки, т.е. круговое движение оси с одновременным вращением заготовки вокруг прецессирующей оси. Угловые скорости этих вращений неравны, что неизбежно вызывает искажение формы поперечного сечения центрового отверстия. Таким образом, при обработке заготовок правильная коническая поверхность центра контактирует лишь по отдельным зонам со сложной поверхностью центрового отверстия.


В общем случае оси центровых отверстий не совпадают. При этом контакт между поверхностью центрового отверстия и центра происходит по двум точкам, в результате чего между центром и заготовкой образуется зазор. Из-за несоосности жестких центров станка, на которых устанавливается заготовка, погрешность взаимного положения центровых отверстий и центров может быть увеличена или уменьшена. Тем самым может быть изменен указанный зазор. Несовпадение осей и углов центрового отверстия и центра приводит к кромочным контактам и возникновению контактных деформаций под действием радиальной составляющей силы резания. Указанные погрешности в итоге наследуются на обрабатываемой поверхности.

Чтобы определить пути уменьшения погрешностей формы при механической обработке в центрах, в частности, при шлифовании, нужно рассмотреть основные механические явления и дать качественную оценку их влияния на динамику самого процесса и точность обработки. Для этого рассмотрим механическую систему, представленную на рисунке 53. В качестве допущения примем, что жесткость шлифовальной бабки абсолютна. Начало координат совместим с осью вращения заготовки. Учитывая, что в системе имеется жидкостное трение, уравнение движения заготовки можно записать в виде

(6)

где m – приведенная масса подвижной системы;

– коэффициент демпфирования;

F – радиальная составляющая реакции центров в сопряжении с заготовкой;

Рy – радиальная составляющая силы резания.


Рисунок 52 – Технологическое наследование погрешностей центровых отверстий: а – заготовка и схемы центровых отверстий с выступами; б – круглограммы обработанных поверхностей, полученных на базе центровых отверстий с тремя, двумя и пятью выступами
Для случая обработки вблизи одного из центров реакция может быть представлена следующим образом: Fjy, где j – жесткость сопряжения центр―заготовка. Эксперименты показали, что при нагружении радиальной силой отжатия заготовки в сечении центрового отверстия не постоянны, а изменяются при повороте ее на центрах. В условиях контакта центра с выступами на конической поверхности центрового отверстия (см. рисунок 52) наибольшая величина отжатия соответствует впадине, наименьшая―выступу, т.е. эпюра отжатий повторяет форму центрового отверстия (рисунок 52). Жесткость сопряжения центр–заготовка может быть представлена как