ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.11.2023
Просмотров: 1031
Скачиваний: 3
СОДЕРЖАНИЕ
1.3. ПСИХОДИАГНОСТИЧЕСКИЕ ЗАДАЧИ
1.4. ДИФФЕРЕНЦИАЛЬНАЯ ПСИХОМЕТРИКА
1.5. НОРМАТИВНЫЕ ПРЕДПИСАНИЯ РАЗРАБОТЧИКАМ И ПОЛЬЗОВАТЕЛЯМ ПСИХОДИАГНОСТИЧЕСКИХ МЕТОДИК
1.5.2. Требования к пользователям
1.5.3. Использование методик специалистамисмежниками
ГЛАВА 2 ИЗ ИСТОРИИ ПСИХОДИАГНОСТИКИ
2.1. ИЗ ИСТОРИИ ПСИХОЛОГИЧЕСКИХ ТЕСТОВ
2.2. ИЗ ИСТОРИИ ПРОЕКТИВНОГО МЕТОДА
Классификация видов проекции по Холмсу
2.3. ИЗ ИСТОРИИ КОНТЕНТ-АНАЛИЗА КАК ПСИХОДИАГНОСТИЧЕСКОЙ ПРОЦЕДУРЫ
3.1. РЕПРЕЗЕНТАТИВНОСТЬ ТЕСТОВЫХ НОРМ
Рис. 1.Соотношение индивидуальной и общей вариации тестовых баллов
3.4. ТЕХНОЛОГИЯ СОЗДАНИЯ И АДАПТАЦИИ МЕТОДИК
3.5. ПРОГНОЗИРОВАНИЕ И РАСПОЗНАВАНИЕ ОБРАЗОВ
Рис. 16. Зависимость вероятности критериального события р и диагностических параметров X1 и Х2
3.6. ТРЕБОВАНИЯ К ПСИХОМЕТРИЧЕСКОЙ ПОДГОТОВКЕ ПСИХОЛОГА
ГЛАВА 4 ПСИХОДИАГНОСТИКА ЧЕРТ ЛИЧНОСТИ
Рис. 18. Концептуальный куб, иллюстрирующий континуальную модель черты личности
Рис. 21. «Четырехполюсное» описание черт «экстраверсия-нтроверсия» при ортогональных параметрах
Рис. 28. Образец задания из субтеста «Абстрактное мышление» (DAT)
Рис. 29 Образец задания из субтеста «Пространственные отношения» (DAT)
Рис. 30. Образец задания из субтеста «Техническое мышление» (DAT)
5.4. ОБЛАСТИ ПРИМЕНЕНИЯ ТЕСТОВ СПОСОБНОСТЕЙ
6.2. ИЗМЕРЕНИЕ МОТИВАЦИИ ДОСТИЖЕНИЯ
Рис. 31. Зависимость Та от силы мотивов Мs и MAf и от субъективной вероятности успеха Ps
6.3. ОПРОСНИК ДЛЯ ИЗМЕРЕНИЯ ПОТРЕБНОСТИ В ДОСТИЖЕНИИ
Таблица 9 Результаты кроссвалидизации тест-опросника
Образец матрицы поведения ребенка
Матрица игры «Дилеммы узников» Выбор игрока Б
7.2. СОВМЕСТНЫЙ ТЕСТ РОРШАХА ДЛЯ ДИАГНОСТИКИ НАРУШЕНИЙ СЕМЕЙНОГО ОБЩЕНИЯ
Обработка данных СТР (на поведенческом уровне)
ГЛАВА 8 ПСИХОДИАГНОСТИКА ИНДИВИДУАЛЬНОГО СОЗНАНИЯ
Рис. 32. Способ последовательного вызывания конструктов и элементов
Рис. 35. Монолитная —(а), артикулированная - (б) и фрагментарная - (в) системы конструктов
ГЛАВА 9 ПСИХОДИАГНОСТИКА САМОСОЗНАНИЯ
9.2. МЕТОДИКИ ПСИХОДИАГНОСТИКИ САМОСОЗНАНИЯ
9.4. МЕТОДИКА УПРАВЛЯЕМОЙ ПРОЕКЦИИ
9.6. МЕТОДИКА КОСВЕННОГО ИЗМЕРЕНИЯ СИСТЕМЫ САМООЦЕНОК (КИСС)
Рис. 37. Параметры методики КИСС
Рис. 38. Графическое изображение индивидуальной обработки КИСС
Таблица 5
Если проверка согласованности эмпирического распределения с нормальным дает положительные результаты, то это означает, что полученное распределение можно рассматривать как устойчивое репрезентативное по отношению к генеральной совокупности - и, следовательно, на его основе можно определить репрезентативные тестовые нормы. Если проверка не выявляет нормальности на требуемом уровне, то это означает, что либо выборка мала и нерепрезентативна к популяции, либо измеряемые свойство и устройство теста (способ подсчета) вообще не дают нормального распределения.
В принципе отнюдь не обязательно все нормативные распреде-
ления сводить к нормальным. Можно с равным успехом пользоваться хорошо разработанными моделями гамма-распределения, пуассоновского распределения и т. п. Критерий Колмогорова позволяет оценить близость вашего эмпирического распределения к любому теоретическому распределению. При этом устойчивым и репрезентативным может оказаться распределение любого типа. Если из нормальности, как правило, следует устойчивость, то обратное неверно -устойчивость вовсе не обязательно предполагает нормальность распределения.
Наличие значимой положительной асимметрии (см. рис. 2,а) свидетельствует о том, что в системе факторов, детерминирующих значение измеряемого показателя, преобладают факторы, действующие в одном направлении - в сторону повышения показателя. Такого рода отклонения появляются при использовании хронометрических показателей: испытуемый не может решить задачу быстрее определенного минимально необходимого периода, но может существенно долго задерживаться с ее решением. На практике распределения такого рода преобразуют в приближенно нормальное распределение с помощью логарифмической трансформации:
z j ln y j (3.1.11)
При этом говорят, что распределение хронометрических показателей подчиняется «логнормальному» закону.
Подобную алгебраическую нормализацию тестовой шкалы применяют и к показателям с еще более резко выраженной положительной асимметрией. Например, в процедурах контент-анализа сам тестовый показатель является частотным: он измеряет частоту появления определенных категорий событий в текстах. Для редких категорий вероятность появления значительно меньше 0,5. Формула преобразования
z j arcsin (3.1.12)
позволяет придать необходимую 5-образную форму кумуляте.
Стандартизация шкалы. В психометрике следует различать две формы стандартизации. Под стандартизацией теста понимают прежде всего стандартизацию самой процедуры проведения инструкций, бланков, способа регистрации, условий и т. п. Без стандартизации теста невозможно получить нормативное распределение тестовых баллов и, следовательно, тестовых норм.
Под стандартизацией шкалы понимают линейное преобразование масштаба нормальной (или искусственно нормализованной) шкалы. В общем случае формула стандартизации выглядит так:
xi X zj M, (3.1.13). S
где xi - исходный балл по «сырой» шкале, для которой
доказана нормальность распределения;
X - среднее арифметическое по «сырому» распределению; S - «сырое» стандартное отклонение;
М- математическое ожидание по выбранной стандартной шкале; σ - стандартное отклонение по стандартной шкале.
Если шкала подвергалась предварительной искусственной нормализации интервалов, то формула упрощается:
zj =σ zj =M (3.1.14)
Приведем параметры для наиболее популярных стандартных шкал:
-
T -шкала Маккола (тест-опросник MMPI и другие тесты):
М = 50 и σ = 10,
-
шкала IQ : М = 100 и σ = 15, -
шкала «стэнайнов» (целые численные значения от 1 до 9 стандартная девятка): М = 5,0 и σ = 2, -
шкала «стенов» (стандартная десятка, 16PF Кеттелла):
М = 5,5 .и σ = 2.
Чтобы различать стандартные баллы, полученные с помощью линейной стандартизации и нелинейной нормализации интервалов, Р. Кеттелл ввел понятие «S-стенов» и «n-стенов». Таблицы «и-стенов», естественно, точнее отражают квантили эмпирического нормального распределения. Приведем образец такой таблицы для фактора А из тест-опросника 16PF;
Сырые баллы 0-4 5-6 7 8-9 10-12 13 14-15
16 17-18 19-20 Стены 1 2 3 4 5
6 7 8 9 10
Применение стандартных шкал позволяет использовать более грубые, приближенные способы проверки типа распределения тестовых баллов. Если, например, процентильная нормализация с переводом в стены и линейная нормализация с переводом в стены по формуле (3.1.13) дают совпадающие целые значения стенов для каждого Y, то это означает, что распределение обладает нормальностью с точностью до «стандартной десятки».
Применение стандартных шкал необходимо для соотнесения результатов по разным тестам, для построения «диагностических профилей» по батарее тестов и тому подобных целей.
Проверка устойчивости распределения. Общая логика проверки устойчивости распределения основывается на индуктивном рассуждении: если половинное (полученное по половине выборки) распределение хорошо моделирует конфигурацию целого распределения, то можно предположить, что это целое распределение будет также хорошо моделировать распределение генеральной совокупности.
Таким образом, доказательство устойчивости распределения означает доказательство репрезентативности тестовых норм. Традиционный способ доказательства устойчивости сводится к наличию хорошего приближения эмпирического распределения к какому-либо теоретическому. Но если эмпирическое распределение не приближается к теоретическому, несмотря на значительное увеличение объема выборки, то приходится прибегать к более общему индуктивному методу доказательства.
Простейший его вариант может быть сведен к получению таблиц перевода сырых баллов в нормализованную шкалу по данным всей выборки и применению этих таблиц для каждого испытуемого из половины выборки; если распределение нормализованных баллов из половины выборки хорошо приближается к нормальному, то это значит, что заданные таблицами нормализации тестовые нормы определены устойчиво. Близость к нормальному распределению проверяется с помощью критерия Колмогорова (при n <200 целесообразно использовать более мощные критерии: «хи-вадрат» или «омега-квадрат»).
При этом под «половиной выборки» подразумевается случайная половина, в которую испытуемые зачисляются случайным образом -с помощью двоичной случайной последовательности (типа подбрасывания монетки и т. п.). В более общем случае такой простейший метод установления однородности двух эмпирических распределений может быть применен и при разбиении выборки по какому-либо систематическому признаку. Если, в частности, по какому-либо из популяционно значимых признаков (пол, возраст, образование, профессия) психолог получает значимую неоднородность эмпирических распределений; то это значит, что относительно данных популяционных категорий тестовые нормы должны быть специализированы (одна таблица норм - для мужчин, другая - для женщин и т. д.).
Более статистически корректный метод проверки однородности двух распределений, полученных при расщеплении выборки на равные части, опять же связан с применением критерия Колмогорова. Для этого с табличным значением сравнивается:
Ke max Fj1 Fj2 n / 4 (3.1.15)
где Ке - эмпирическое значение статистики Колмогорова;
Fj1 - кумулятивная относительная частота для у-того интервала шкалы по первой половине выборки; Fj2 - та же частота для второй половины; n - полный объем выборки.
Точные значения квантилей распределения Колмогорова для определения размеров выборки можно найти в кн.: Мюллер П. и др., 1982.
Применение критерия Колмогорова не зависит от нормальности целого распределения и от необходимости производить нормализацию интервалов.
* * *
Итак, априорная предпосылка нормальности распределения тес-
товых баллов основывается скорее на принципах операционального удобства, чем на теоретической необходимости. Психометрически корректные процедуры получения устойчивых тестовых норм возможны с помощью специальных методов непараметрической статистики (критерий «хи-квадрат» и т. п.) для распределений произвольной формы. Выбор статистической модели распределения - законный произвол психометриста, пока сам тест выступает в качестве единственного эталона измеряемого свойства. В этом случае остается лишь тщательно следить за соответствием сферы применения диагностических норм той выборке испытуемых, на которой они были получены. Произвольность в выборе статистической модели шкалы исчезает, когда речь заходит о внешних по отношению к тесту критериях.
Репрезентативность критериальных тестов. В таких тестах в качестве реального эталона применяется критерий, ради которого создается тест, - целевой критерий. Особое значение такой подход имеет в тех областях практики, где высокие результаты могут дать узкоспециализированные диагностические методики, нацеленные на очень конкретные и узкие критерии. Такая ситуация имеет место в обучении: тестирование, направленное на получение информации об уровне усвоения определенных знаний, умений и навыков (При профессиональном обучений), должно точно отражать уровень освоения этих навыков и тем самым давать надежный прогноз эффективности конкретной профессиональной деятельности, требующей применения этих навыков. Так возникают «тесты достижений», по отношению к которым критериальный подход обнаружил свою высокую эффективность (Гуревич К. М, Лубовский В. И,, 1982).
Рассмотрим операциональную схему шкалирования, применяемую при создании критериального теста. Пусть имеется некоторый критерий С, ради прогнозирования которого психодиагност создает тест X. Для простоты представим С как дихотомическую переменную с двумя значениями: 1 и 0. С, = 1 означает, что j-й субъект достиг критерия (попал в «высокую» группу по критерию), Сj=0 означает, что i-й субъект не достиг критерия (попал в «низкую» группу). Психодиагност применяет на нормативной выборке тест X, и в результате каждый индивид получает тестовый балл Xi. После того как для каждого индивида из выборки становится известным значение С (иногда на это требуются месяцы и годы после момента тестирования), психодиагност группирует индивидов по порядку возрастания балла Xi и для каждого деления исходной шкалы сырых тестовых баллов подсчитывает эмпирическую вероятность Р попадания в «высокую» группу по критерию С. На рис. 5 показаны распределения вероятности Р (Ci = 1) в зависимости от Xi
Рис. 5 Эмпирическая зависимость между вероятностью критериального события и тестовым баллом
Очевидно, что кривая на рис. 5 по своей конфигурации может совершенно не совпадать с кумулятивной кривой распределения частот появления различных Xi. Кривая, представленная на рис. 5, является эмпирической линией регрессии С по Xi Теперь можно сформулировать основное требование к критериальному тесту: линия регрессии должна быть монотонной функцией С от Xi Иными словами, ни для одного более высокого значения X. вероятность Р не должна быть меньшей, чем для какого-либо менее высокого значения Xi Если это условие выполняется, то открывается возможность для критериального шкалирования сырых баллов X. Так же как в случае с интервальной нормализацией», когда применяется поточечный перевод интервалов Х в интервалы Z, для которых выполняется нормальная модель распределения, так и при критериальном шкалировании к делениям сырой шкалы X применяется поточечный перевод прямо в шкалу Р на основании эмпирической линии регрессии. Например, если испытуемый А получил по тесту X 18 сырых баллов и этому результату соответствует Р=0,6, то испытуемому А ставится в соответствие показатель 60 %.
Конечно, любая эмпирическая кривая является лишь приближенной моделью той зависимости, которая могла бы быть воспроизведена на генеральной совокупности. Обычно предполагается, что на генеральной совокупности линия регрессии С по Х должна иметь более сглаженную форму. Поэтому обычно предпринимаются попытки аппроксимировать эмпирическую линию регрессии какой-либо функциональной зависимостью, что позволяет затем производить прогноз с применением формулы (а не таблицы или графика).