ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.11.2023
Просмотров: 938
Скачиваний: 3
СОДЕРЖАНИЕ
1.3. ПСИХОДИАГНОСТИЧЕСКИЕ ЗАДАЧИ
1.4. ДИФФЕРЕНЦИАЛЬНАЯ ПСИХОМЕТРИКА
1.5. НОРМАТИВНЫЕ ПРЕДПИСАНИЯ РАЗРАБОТЧИКАМ И ПОЛЬЗОВАТЕЛЯМ ПСИХОДИАГНОСТИЧЕСКИХ МЕТОДИК
1.5.2. Требования к пользователям
1.5.3. Использование методик специалистамисмежниками
ГЛАВА 2 ИЗ ИСТОРИИ ПСИХОДИАГНОСТИКИ
2.1. ИЗ ИСТОРИИ ПСИХОЛОГИЧЕСКИХ ТЕСТОВ
2.2. ИЗ ИСТОРИИ ПРОЕКТИВНОГО МЕТОДА
Классификация видов проекции по Холмсу
2.3. ИЗ ИСТОРИИ КОНТЕНТ-АНАЛИЗА КАК ПСИХОДИАГНОСТИЧЕСКОЙ ПРОЦЕДУРЫ
3.1. РЕПРЕЗЕНТАТИВНОСТЬ ТЕСТОВЫХ НОРМ
Рис. 1.Соотношение индивидуальной и общей вариации тестовых баллов
3.4. ТЕХНОЛОГИЯ СОЗДАНИЯ И АДАПТАЦИИ МЕТОДИК
3.5. ПРОГНОЗИРОВАНИЕ И РАСПОЗНАВАНИЕ ОБРАЗОВ
Рис. 16. Зависимость вероятности критериального события р и диагностических параметров X1 и Х2
3.6. ТРЕБОВАНИЯ К ПСИХОМЕТРИЧЕСКОЙ ПОДГОТОВКЕ ПСИХОЛОГА
ГЛАВА 4 ПСИХОДИАГНОСТИКА ЧЕРТ ЛИЧНОСТИ
Рис. 18. Концептуальный куб, иллюстрирующий континуальную модель черты личности
Рис. 21. «Четырехполюсное» описание черт «экстраверсия-нтроверсия» при ортогональных параметрах
Рис. 28. Образец задания из субтеста «Абстрактное мышление» (DAT)
Рис. 29 Образец задания из субтеста «Пространственные отношения» (DAT)
Рис. 30. Образец задания из субтеста «Техническое мышление» (DAT)
5.4. ОБЛАСТИ ПРИМЕНЕНИЯ ТЕСТОВ СПОСОБНОСТЕЙ
6.2. ИЗМЕРЕНИЕ МОТИВАЦИИ ДОСТИЖЕНИЯ
Рис. 31. Зависимость Та от силы мотивов Мs и MAf и от субъективной вероятности успеха Ps
6.3. ОПРОСНИК ДЛЯ ИЗМЕРЕНИЯ ПОТРЕБНОСТИ В ДОСТИЖЕНИИ
Таблица 9 Результаты кроссвалидизации тест-опросника
Образец матрицы поведения ребенка
Матрица игры «Дилеммы узников» Выбор игрока Б
7.2. СОВМЕСТНЫЙ ТЕСТ РОРШАХА ДЛЯ ДИАГНОСТИКИ НАРУШЕНИЙ СЕМЕЙНОГО ОБЩЕНИЯ
Обработка данных СТР (на поведенческом уровне)
ГЛАВА 8 ПСИХОДИАГНОСТИКА ИНДИВИДУАЛЬНОГО СОЗНАНИЯ
Рис. 32. Способ последовательного вызывания конструктов и элементов
Рис. 35. Монолитная —(а), артикулированная - (б) и фрагментарная - (в) системы конструктов
ГЛАВА 9 ПСИХОДИАГНОСТИКА САМОСОЗНАНИЯ
9.2. МЕТОДИКИ ПСИХОДИАГНОСТИКИ САМОСОЗНАНИЯ
9.4. МЕТОДИКА УПРАВЛЯЕМОЙ ПРОЕКЦИИ
9.6. МЕТОДИКА КОСВЕННОГО ИЗМЕРЕНИЯ СИСТЕМЫ САМООЦЕНОК (КИСС)
Рис. 37. Параметры методики КИСС
Рис. 38. Графическое изображение индивидуальной обработки КИСС
Например, если линия регрессии имеет вид приблизительно такой, какой изображен на рис. 6, то применение процентильной нормализации позволяет получить простую линейную регрессию С по нормализованной шкале Z. Это как раз тот случай, когда имеет место эквивалентность стратегии, использующей выборочно-статистические тестовые нормы, и стратегии, использующей критериальные нормы.
Рис. 6. Зависимость вероятности критериального события
Р от нормально распределенного диагностического параметра X
Операции по анализу распределения тестовых баллов, построению тестовых норм и проверке их репрезентативности. Завершая этот раздел, кратко перечислим действия, которые последовательно должен произвести психолог при построении тестовых норм.
-
Сформировать выборку стандартизации (случайную или стратифицированную по какому-либо параметру) из той популяции, на которой предполагается применять тест. Провести на каждом испытуемом из выборки тест в сжатые сроки (чтобы устранить иррелевантный разброс, вызванный внешними событиями, происшедшими за время обследования). -
Произвести группировку сырых баллов с учетом выбранного интервала квантования (интервала равнозначности). Интервал определяется величиной W/m , где W=x max — х max; m - количество интервалов равнозначности (градаций шкалы). -
Построить распределение частот тестовых баллов (для заданных интервалов равнозначности) в виде таблицы и в виде соответствующих графиков гистограммы и кумуляты. -
Произвести расчет среднего арифметического значения и стандартного отклонения, а также асимметрии и эксцесса с помощью компьютера. Проверить гипотезы о значимости асимметрии и эксцесса. Сравнить результаты проверки с визуальным анализом кривых распределения. -
Произвести проверку нормальности одного из распределений с помощью критерия Колмогорова (при n < 200 с помощью более мощных критериев) или произвести процентильную нормализацию с переводом в стандартную шкалу, а также линейную стандартизацию и сравнить их результаты (с точностью до целых значений стандартных баллов). -
Если совпадения не будет - нормальность отвергается; в этом случае произвести проверку устойчивости распределения расщеплением выборки на две случайные половины. При совпадении нормализованных баллов для половины и для целой выборки можно считать нормализованную шкалу устойчивой. -
Проверить однородность распределения по отношению к варьированию заданного популяционного признака (пол, профессия и
т. п.) с помощью критерия Колмогорова. Построить в совмещенных координатах графики гистограммы и кумуляты для полной и частной выборок. При значимых различиях разбить выборку на разнородные подвыборки.
-
Построить таблицы процентильных и нормализованных тестовых норм (для каждого интервала равнозначности сырого балла). При наличии разнородных подвыборок для каждой из них должна быть своя таблица. -
Определить критические точки (верхнюю и нижнюю) для доверительных интервалов (на уровне Р < 0,01) с учетом стандартной ошибки в определении среднего значения. -
Обсудить конфигурацию полученных распределений с уче-
том предполагаемого механизма выполнения того или иного теста.
-
В случае негативного результата: отсутствия устойчивых норм для шкалы с заданным числом градаций (с заданной точностью прогноза критериальной деятельности) - осуществить обследование более широкой выборки или отказаться от использования, данного теста.
200>
3.2. НАДЕЖНОСТЬ ТЕСТА
В дифференциальной психометрике проблемы валидности и надежности тесно взаимосвязаны, тем не менее мы последуем традиции раздельного изложения методов проверки этих важнейших психометрических свойств теста.
Надежность и точность. Как уже отмечалось в разделе 3.1, общий разброс (дисперсию) результатов произведенных измерений можно представить как результат действия двух источников разнообразия: самого измеряемого свойства и нестабильности измерительной процедуры, обусловливающей наличие ошибки измерения. Это представление выражено в формуле, описывающей надежность теста и виде отношения истинной дисперсии к дисперсии эмпирически зарегистрированных баллов:
ST2
a 2 (3.2.1)
Sx
Так как истинная дисперсия и дисперсия ошибки связаны очевидным соотношением, формула (3.2.1) легко преобразуется в формулу Рюлона:
Se2
a1 2 (3.2.2)
Sx
где а - надежность теста; Se2. -дисперсия ошибки.
Величина ошибки измерения - обратный индикатор точности измерения. Чем больше ошибка, тем шире диапазон неопределенности на шкале (доверительный интервал индивидуального балла), внутри которого оказывается статистически возможной локализация истинного балла данного испытуемого. Таким образом, для проверки гипотезы о значимости отличия балла испытуемого от среднего значения оказывается недостаточным только оценить ошибку среднего, нужно еще оценить ошибку измерения, обусловливающую разброс в положении индивидуального балла (рис. 7).
Рис. 7. Соотношение распределений Sm – стандартное отклонение эмпирического среднего, St – стандартное отклонение ошибки
Как же определить ошибку измерения? На помощь приходят корреляционные методы, позволяющие определить точность (надежность) через устойчивость и согласованность результатов, получаемых как на уровне целого теста, так и на уровне отдельных его пунктов.
Надежность целого теста имеет две разновидности.
1. Надежность-устойчивость (ретестовая надежность). Измеряется с помощью повторного проведения теста на той же выборке испытуемых, обычно через две недели после первого тестирования. Для интервальных шкал подсчитывается хорошо известный коэффициент корреляции произведения моментов Пирсона: 2
1i 2i x x
x1ix2i
r12 n
2 2 2 2
(x1i (x1i ) /n)(x2i x2i ) /n)
где х1i. - тестовый балл i-го испытуемого при первом измерении;
х2i. - тестовый балл того же испытуемого при повторном измере-
нии; n - количество испытуемых.
Оценка значимости этого коэффициента основывается на несколько иной логике, чем это обычно делается при проверке нулевой гипотезы - о равенстве корреляций нулю. Высокая надежность достигается тогда, когда дисперсия ошибки оказывается пренебрежительно малой. 'Относительную долю дисперсии ошибки легко определить по формуле
S2
2 e
S0 2 1r12 (3.2.4) Sx
Таким образом, для нас существеннее близость к единице, а не отдаленность от нуля. Обычно в тестологической практике редко удается достичь коэффициентов, превышающих 0,8. При г = 0,75 относительная доля стандартной ошибки равна 1 0,75 0,5. Этой ошибкой, очевидно, нельзя пренебречь. При такой ошибке эмпирически полученное отклонение индивидуального тестового балла от среднего по выборке оказывается, как правило, завышенным. Для того чтобы выяснить «истинное» значение тестового балла индивида, применяется формула
xrxi (1r)x (3.2.5)
где x - истинный балл; ' хi — эмпирический балл i-го испытуемого; r - эмпирически измеренная надежность теста;
x - среднее для теста.
Предположим, испытуемый получил балл IQ по шкале Стэнфорда.-Бине, равный 120 нормализованным очкам, М = 100, г = 0,9. Тогда истинный балл x = 0,9 120 + 0,1 100 =118.
Конечно, требование ретестовой надежности является корректным лишь по отношению к таким психическим характеристикам индивидов, которые сами являются устойчивыми во времени. Если мы создаем тест для измерения эмоциональных состояний (бодрости, тревоги и т. д.), то, очевидно, требовать от него ретестовой надежности бессмысленно: у испытуемых быстрее изменится состояние, чем они забудут свои ответы по первому тестированию.
Для шкал порядка в качестве меры устойчивости к перетестированию используется коэффициент ранговой корреляции Спирмена:
p 1 6di2 , (3.2.6)
2
n(n 1)
где di — разность рангов /-го испытуемого в первом и втором ранговом ряду.
С помощью компьютера определяется более надежный коэффициент ранговой корреляции Кендалла (1975).
2. Надежность- согласованность (одномоментная надежность).
Эта разновидность надежности не зависит от устойчивости, имеет особую содержательную и операциональную природу. Простейшим способ ее измерения СОСТОИТЕ коррелировании параллельных форм теста (Анастази Д., 1982, кн. 1,с. 106). Чаще всего параллельные формы теста получают расщеплением составного теста на «четную» и «нечетную» половины: к первой относятся четные пункты, ко второй - нечетные. По каждой половине рассчитываются суммарные баллы и между двумя рядами баллов по испытуемым определяются допустимые (с учетом уровня измерения) коэффициенты корреляции. Если параллельные тесты не нормализованы, то предпочтительнее использовать ранговую корреляцию. При таком расщеплении получается коэффициент, относящийся к половинам теста. Для того чтобы найти надежность целого теста пользуются формулой Спирмена - Брауна:
2rx
rxx (3.2.7)
1rx
где rx - эмпирически рассчитанная корреляция для половин.
Делить тест на две половины можно разными способами, и каждый раз получаются несколько разные коэффициенты (Аванесов В. С., 1982, с. 122), поэтому в психометрике существует способ оценки синхронной надежности, который соответствует разбиению теста на такое количество частей, сколько в нем отдельных пунктов. Такова формула Кронбаха:
j 2
S j k j1
ak11 Sx2 (3.2.8)
где а - коэффициент Кронбаха; k- количество пунктов теста;
S8j - дисперсия по j-му пункту теста;
Sx2 - дисперсия суммарных баллов по всему тесту.
Обратите внимание на структурное подобие формулы Кронбаха (3.2.2) и формулы Рюлона (3.2.8).