ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 19.08.2021
Просмотров: 3529
Скачиваний: 32
СОДЕРЖАНИЕ
ТАҚЫРЫП 1: Графикалық көрініс негізінде медициналық-биологиялық мәліметтерді талдау.
ТАҚЫРЫП 2. Таңдама әдісі. Тарамдалудың дискретті статистикалық қатары
ТАҚЫРЫП 3. Кездейсоқ шаманың қалыпты тарамдалуы туралы болжамды тексеру.
ТАҚЫРЫП4.Биомедициналық мәліметтерді талдау үшін Стьюденттің t-критерийі
ТАҚЫРЫП 5. Сенімділік интервалы
5.1 Генеральды орташаның сенімділік интервалы
5.2 Екі тәуелсіз топтың генеральды орташасының айырмасы үшін сенімділік интервалы
5.3 Екі тәуелді топтың генеральды орташасының айырмасы үшін сенімділік интервалы
ТАҚЫРЫП6. Биостатистикадағы салыстырмалы шамалар бағасы
6.1 Салыстырмалы көрсеткіштің сенімділік интервалы
ТАҚЫРЫП 7.Статисткалық болжамды тексерудің параметрлік емес критерийі.
ТАҚЫРЫП 8.Сапалық белгілерді талдау. Қиысу кестесі
«Кездейсоқ шамалардың негізгі статистикалық сипаттамаларына» бақылау тапсырмасы
«Статистикалық болжамдарды тексеру теориясы» тақырыбы бойынша бақылау тапсырмалары
ТАҚЫРЫП9. Сызықтық корреляция. Спирмен корреляцисының рангтік коэффициенті
ТАҚЫРЫП 11. Дисперсиялық талдау. Бірфакторлы дисперсилық талдау әдісі.
ТАҚЫРЫП 12.Өміршеңдікті талдау әдісі
As ассиметриясы коэффициентінің критикалық мәндері
Ех экцесс коэффициентінің критикалық мәндері
Стъюдент t-критерийінің критикалық мәні
Манна-Уитнидің U-критерийінің критикалық мәні, α = 0,01. Екіжақтылық критерий
ТАҚЫРЫП 2. Таңдама әдісі. Тарамдалудың дискретті статистикалық қатары
-
Биостатистика пәні, биостатистика мақсаты
-
Медициналық зерттеулерде статистикалық талдаудың қолданылуы
-
Кездейсоқ шама түсінігі
-
Таңдама және генеральды жиынтық
-
Белгілердің жіктелуі: сандық және сапалық белгілер
-
Гистограмма тұрғызу ережесі
Дидактикалық бөлім
Орташа мән ()– өлшеу осінде кездейсоқ шама мәнінің орналасу сипаттамасы
Д исперсия (D) – орташа мәнге қатысты кездейсоқ шама мәнінің шашырау сипатттамасы
Орташа квадраттық ауытқу(стандарттық ауытқу) –сол сияқты өлшеу бірлігінің квадраттан құтылу үшін енгізілген, қалыпты бірлікте шашыраудың сипаттамасы болып табылады
Вариациялар коэффициенті процентпен өрнектелген шашыраудың қатынасты мөлшерін көрсетеді.Ол формула бойынша есептеледі:
Вариациялар коэффициенті:
-
Өлшем бірлігі әртүрлі болатын екі және одан көп шашырауды салыстыру үшін қолданылады.
-
Ол жиынтықтың біртектілігін талдауға мүмкіндік береді:
17% – мүлдем біртекті;
17–33% – жеткілікті біртекті;
35–40% – жеткіліксіз біртекті;
40–60% – жиынтықтың үлкен шашырау туралы айтады.
Яғни, таңдаманы V% ≤ 33% кезінде біртекті деп санаймыз.
О рташаның стандартты қатесі. Орташа мән генералды жиынтықтан емес, шектелген таңдама бойынша анықталғандықтан, ол ақиқат (генеральды) орташадан ерекшеленеді, яғни қандай да бір орташаның стандартты қатесі деп аталатын анықталған қателігі болады.
Мода (Мо) – кездейсоқ шаманың ең жиі кездесетін мәні. Моданы анықтау үшін таңдаманың барлық мәндері ранжирленген қатарға(өсу немесе кему ретімен) орналастырылады. Моданың бірнеше мәні болуы мүмкін.
Ранжирленген қатардан медиананы (Ме) табамыз – бұл таңдаманың қақ ортасынан бөлетін кездейсоқ шаманың мәні. Егер таңдама объектілерінің саны жұп болса, онда медиана екі көршілес мәндердің орташасына тең.
Төменгі квартиль Q25 – таңдаманың 25% төмен орналасқан кездейсоқ шаманың мәні.
Ранжирленген қатардан төменгі квартильдің номерін төмендегі формула бойынша анықтаймыз:
Жоғарғы квартиль Q75 – Q75 – таңдаманың 25% жоғары орналасқан кездейсоқ шаманың мәні.
Ранжирленген қатардан жоғарғы квартильдің номері келесі формуламен анықталады:
Квартильаралық (интерквартильдық) қадам–ΔQ=Q75-Q25бұл айырма.
Төменгі квартилден жоғарғы квартилге дейінгі аралықта жататын берілгендердің 50 %.
ОҚЫТУШЫМЕН ЖҰМЫС
Ұлдар бойын талдау |
||||||||||||
n=11 |
х1 |
х2 |
х3 |
х4 |
х5 |
х6 |
х7 |
х8 |
х9 |
х10 |
х11 |
∑ |
Ұлдар бойы. |
186 |
178 |
167 |
170 |
168 |
172 |
182 |
176 |
170 |
188 |
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
Dх= |
sх= |
mх= |
V%= |
|
|
|
|||||
Ранж. қатар |
|
|
|
|
|
|
|
|
|
|
|
|
Мо= |
Ме= |
Q25= |
Q75= |
Q75- Q25= |
|
|
Қыздар бойын талдау |
||||||||||||
n=11 |
y1 |
y2 |
y3 |
y4 |
y5 |
y6 |
y7 |
y8 |
y9 |
y10 |
y11 |
∑ |
Қыздар бойы |
161 |
168 |
164 |
163 |
165 |
160 |
165 |
165 |
169 |
170 |
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
Dy= |
sy= |
my= |
V%= |
|
|
|
|||||
Ранж. қатар |
|
|
|
|
|
|
|
|
|
|
|
|
Мо= |
Ме= |
Q25= |
Q75= |
Q75- Q25= |
|
|
ТАҚЫРЫП 2. Өздік жұмыс: Кестедегі берілгендерден өз нұсқаңа сәйкес кездейсоқ шама үшін орташаны, дисперсия, стандарттық ауытқу, орта қате, мода, медиана, төменгі және жоғарғы квартиль, квартильаралық қадамды есептеңіз. Нәтижені графикалық түрде көрсетіңіз.
Нұсқа |
|||||||||||||||
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
Бой, см |
Бой, см |
Сілекейдегі Р мөлшері, ммоль\л |
Сілекейдегі Р мөлшері, ммоль\л |
Салмақ, кг |
Салмақ, кг |
Плазма айналымының көлемі, мл\кг |
Плазма айналымының көлемі, мл\кг |
Жүрек соғысы, соғу\мин |
Жүрек соғысы, соғу\мин |
Гематокрит көрсеткіші |
Гематокрит көрсеткіші |
Қандағы пролактин концентрациясы (нг/мл) |
Зәрдегі андростерон мөлшері(мг/тәулік) |
Қандағы пролактин концентрациясы (нг/мл) |
|
196 |
167 |
7 |
2,2 |
65 |
58 |
45 |
34 |
66 |
76 |
0,26 |
0,48 |
25 |
0,82 |
36 |
|
175 |
177 |
3,7 |
4,5 |
70 |
70 |
36 |
32 |
72 |
72 |
0,12 |
0,1 |
120 |
0,9 |
120 |
|
181 |
165 |
5,5 |
4,7 |
75 |
75 |
37 |
39 |
77 |
82 |
0,2 |
0,22 |
75 |
0,98 |
88 |
|
181 |
195 |
3,1 |
2,3 |
68 |
88 |
38 |
42 |
80 |
80 |
0,28 |
0,16 |
50 |
1,06 |
50 |
|
184 |
181 |
3,9 |
3,8 |
92 |
92 |
41 |
46 |
58 |
90 |
0,29 |
0,41 |
185 |
1,2 |
166 |
|
154 |
194 |
4,5 |
5,7 |
88 |
81 |
42 |
41 |
75 |
75 |
0,21 |
0,23 |
125 |
1,29 |
125 |
|
173 |
178 |
5,7 |
2,9 |
76 |
76 |
26 |
38 |
82 |
88 |
0,45 |
0,14 |
70 |
1,48 |
82 |
|
169 |
177 |
4 |
5,9 |
73 |
66 |
31 |
28 |
78 |
78 |
0,38 |
0,33 |
145 |
1,42 |
145 |
|
169 |
191 |
3,7 |
3,1 |
77 |
77 |
35 |
39 |
71 |
76 |
0,29 |
0,34 |
170 |
1,4 |
144 |
|
163 |
175 |
6 |
6,7 |
102 |
90 |
40 |
27 |
62 |
62 |
0,24 |
0,35 |
80 |
1,08 |
80 |
|
174 |
155 |
3,8 |
4,4 |
85 |
85 |
43 |
43 |
78 |
66 |
0,27 |
0,27 |
110 |
1,11 |
57 |
|
192 |
175 |
5,4 |
4,7 |
69 |
100 |
36 |
33 |
76 |
76 |
0,18 |
0,24 |
87 |
1,32 |
87 |
|
176 |
165 |
6,1 |
3,6 |
70 |
70 |
37 |
44 |
82 |
80 |
0,23 |
0,3 |
115 |
1,12 |
99 |
|
177 |
170 |
3,9 |
6,9 |
77 |
52 |
36 |
34 |
82 |
82 |
0,3 |
0,17 |
130 |
1,26 |
130 |
|
177 |
161 |
4,4 |
5,6 |
82 |
82 |
30 |
40 |
66 |
85 |
0,32 |
0,11 |
58 |
0,88 |
69 |
|
180 |
178 |
5,6 |
3,5 |
66 |
77 |
26 |
31 |
60 |
78 |
0,18 |
0,15 |
122 |
1,16 |
122 |
|
177 |
178 |
3,8 |
6,4 |
75 |
75 |
44 |
26 |
75 |
75 |
0,42 |
0,3 |
78 |
1,3 |
80 |
|
155 |
176 |
2,4 |
3 |
69 |
88 |
30 |
33 |
78 |
75 |
0,36 |
0,28 |
110 |
1,2 |
110 |
|
174 |
178 |
2,5 |
6,6 |
83 |
83 |
40 |
36 |
72 |
72 |
0,26 |
0,4 |
66 |
0,84 |
70 |
|
167 |
185 |
3,6 |
4,7 |
74 |
70 |
31 |
37 |
68 |
80 |
0,29 |
0,23 |
92 |
0,96 |
92 |
ТАҚЫРЫП 3. Кездейсоқ шаманың қалыпты тарамдалуы туралы болжамды тексеру.
Кездейсоқ шаманың қалыпты тарамдалуын тексеру үшін ассиметрия коэффициенті және экцесс коэффициенттерін қолдануға болады.
Ассиметрия коэффициенті As – тарамдалу қисығының симметриялықтан ауытқу көрсеткіші.
Теріс ассиметрия коэффициенті тарамдалу қисығының центрінен солға қарай қисайғандығын, оң болса – оңға қарай қисайғандығын көрсетеді. Қалыпты тарамдалғанда As нөлге жуық болады.
Эксцесс коэффициенті Ex тарамдалу қисығының үшкірлік дәрежесін сипаттайды (теріс коэффициент неғұрлым сүйірленген төбені, ал оң коэффициент көбінде неғұрлым жатық төбені білдіреді).
Қалыпты тарамдалу үшін бұл коэффициенттер нөлге жақын болуы тиіс.Бірақ, олар таңдалған болғандықтан, көбінесе тәжірибеде дәл нөлге тең болуы кездеспейді десе де болады. Сондықтан тарамдалудың қалыптылығын тексеру үшін әртүрлі мәңділік деңгейі мен таңдама көлеміндегі осы коэффициенттер үшін критикалық нүктелер көрсетілген кестені (Қосымша 1) қолдануды ұсынады. Егер ассиметрия және эксцесс үшін есептелген мәндер осы критикалық нүктелерден артық болса, қалыпты тарамдалу туралы болжам теріске шығарылады.
Мысал. 25 мәннен тұратын таңдаманың систолалық артериальдық қысымының қалыпты тарамдалуын тексеру қажет.
130 |
120 |
125 |
130 |
100 |
110 |
125 |
130 |
145 |
140 |
140 |
155 |
135 |
145 |
125 |
120 |
110 |
100 |
95 |
125 |
130 |
110 |
135 |
140 |
155 |
|
Н(0):систоликалық қысымының тарамдалуы қалыпты тармдалуға сәйкес келеді
Есептеуді орындаймыз
|
|
|
|
|
п =25 |
|
s= |
As= |
Ex= |
α=0,05 |
Asкрит= |
Exкрит= |
Қорытынды:
Өздік жұмыс.
Тапсырма 1. Кестедегі мәліметтер бойынша тарамдалу гистограммасын салып, тарамдалудың эмпирикалық қисығын жүргізіңіз, ассиметрия және эксцесс коэффициентін есептеп, тарамдалудың қалыптығы туралы болжамды тексеру қажет.
Қан айналымының көлемі, мл/кг |
45 |
36 |
37 |
38 |
41 |
42 |
26 |
31 |
35 |
40 |
43 |
36 |
37 |
36 |
30 |
26 |
44 |
30 |
40 |
31 |
38 |
43 |
40 |
35 |
36 |
36 |
Тапсырма 2. Кестедегі мәліметтер бойынша кездейсоқ шаманың қалыпты тарамдалуы туралы болжамды тексеріңіз.
п =50 |
4,43 |
s=1,25 |
α=0,05 |
As=0,655 |
Ex=-0,901 |