Файл: 1. Понятие регулярности полетов ла факторы, влияющие на регулярность вылета.docx
Добавлен: 08.11.2023
Просмотров: 1954
Скачиваний: 25
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
y и коэффициента силы лобового сопротивления Cx от угла атаки показана на рис. 7.
Рис. 7. Коэффициент подъемной силы и коэффициент лобового сопротивления крыла.
Аэродинамическим качеством профиля называется отношение подъемной силы к лобовому сопротивлению. Сам термин качество происходит из функции крыла – оно призвано создавать подъемную силу, а то, что при этом появляется побочный эффект – лобовое сопротивление, явление вредное. Поэтому логично отношение пользы к вреду назвать качеством. Можно построить зависимость Су от Сх на графике Рис. 8. Зависимость Сy от Cx в прямоугольных координатах называется полярой профиля. Длина отрезка между началом координат и любой точкой на поляре пропорциональна полной аэродинамической силе R, действующей на крыло, а тангенс угла наклона этого отрезка к горизонтальной оси равен аэродинамическому качеству К. Поляра позволяет очень просто оценивать изменение аэродинамического качества профиля крыла. Для удобства, на кривую принято наносить реперные точки, отмечающие соответствующий угол атаки крыла. По поляре легко оценить профильное сопротивление, максимально достижимое аэродинамическое качество профиля и его другие, важные параметры. Поляра зависит от числа Re. Свойства профиля удобно оценивать по семейству поляр, построенных в одной сетке координат для различных чисел Re. Поляры конкретных профилей получают двумя способами: - продувками в аэродинамической трубе; - теоретическими расчетами.
3. Аэродинамическое качество.
С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большею подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла.
Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла на данном угле атаки
(2.17)
где Y - подъемная сила, кг;
Q - сила лобового сопротивления, кг. Подставив в формулу значения Y и Q, получим
(2.18)
Чем больше аэродинамическое качество крыла, тем оно совершеннее. Величина качества для современных самолетов может достигать 14-15, а для планеров 45-50. Это означает, что крыло самолета может создавать подъемную силу, превышающую лобовое сопротивление в 14-15 раз, а у планеров даже в 50 раз.
Аэродинамическое качество характеризуется углом (см. Рис. 13).
или
(2.19)
Угол между векторами подъемной и полной аэродинамической сил называется углом качества. Чем больше аэродинамическое качество, тем меньше угол качества, и наоборот.
Аэродинамическое качество крыла, как видно из формулы (2.18), зависит от тех же факторов, что и коэффициенты Су и Сх, т. е. от угла атаки, формы профиля, формы крыла в плане, числа М полета и от обработки поверхности.
ВЛИЯНИЕ НА АЭРОДИНАМИЧЕСКОЕ КАЧЕСТВО УГЛА АТАКИ.
По известным значениям аэродинамических коэффициентов Су и Сх для различных углов атаки строят график К = f ()(Рис. 23).
Из графика видно, что с увеличением угла атаки до определенной величины аэродинамическое качество возрастает. При некотором угле атаки качество достигает максимальной величины Кмакс. Этот угол называется наивыгоднейшим углом атаки, наив.
На угле атаки нулевой подъемной силы о где Су=0
аэродинамическое качество будет равно нулю.
Влияние на аэродинамическое качество формы профиля связано с относительными толщиной и кривизной профиля. При этом большое влияние оказывают форма обводов профиля, форма носка и положение максимальной толщины профиля вдоль хорды (Рис. 24).
При обтекании профилей с закругленными и утолщенными носками на носке профиля образуется подсасывающая сила, которая может значительно уменьшить лобовое сопротивление. Наибольшей величины она достигает на углах атаки, близких к наив, когда подсасывающая сила может превышать силу трения (Рис. 25).
Для получения больших значений Кмакс выбираются оптимальные толщина и кривизна профиля, формы обводов и удлинение крыла.
Форма крыла в плане также оказывает влияние на аэродинамическое качество крыла. Для получения наибольших значений качества наилучшей формой крыла является эллипсовидная с закругленной передней кромкой. Такое крыло имеет наименьшее индуктивное сопротивление. Увеличение удлинения крыла уменьшает его индуктивное сопротивление (вспомним ) следовательно, увеличивает аэродинамическое качество.
При увеличении числа М полета до появления волнового кризиса качество будет незначительно возрастать (для данного угла атаки), так как проявление сжимаемости воздуха увеличивает
Су. С наступлением волнового кризиса качество резко уменьшается, потому что коэффициент подъемной силы уменьшается, а Сх увеличивается (Рис. 26).
Состояние поверхности крыла (шероховатость, волнистость, отступление от заданной формы) влияет на величину профильного сопротивления. Поэтому, улучшая состояние поверхности крыла (или поддерживая ее в хорошем состоянии), можно добиться повышения аэродинамического качества самолета.
Вопросы 6 раздела.
Безопасность полётов — это состояние авиационной системы или организации, при котором риски, связанные с авиационной деятельностью, относящейся к эксплуатации воздушных судов или непосредственно обеспечивающей такую эксплуатацию, снижены до приемлемого уровня и контролируются[1].
Это понятие не следует путать с авиационной безопасностью. В зависимости от контекста понятие безопасности полётов может иметь различные интерпретации, например[2]:
Ни один вид человеческой деятельности и ни одна искусственная система не свободны от рисков. Безопасность относительное понятие, предполагающее наличие рисков и в "безопасной" системе при их приемлемом уровне. Соответственно, безопасность рассматривается как результат управления факторами риска — состояние, при котором риски причинения вреда лицам или имуществу снижены до приемлемого уровня и поддерживаются на этом, либо более низком уровне, путём систематического выявления источников опасности и контроля факторов риска[2].
Одной из задач в управлении безопасностью полётов является популяризация и распространение информации о безопасности полётов[2].
Приложение 19 из Конвенции. Безопасность полетов. Состояние, при котором риски, связанные с авиационной деятельностью, относящейся к эксплуатации воздушных судов или непосредственно обеспечивающей такую эксплуатацию, снижены до приемлемого уровня и контролируются.
Рис. 7. Коэффициент подъемной силы и коэффициент лобового сопротивления крыла.
Аэродинамическим качеством профиля называется отношение подъемной силы к лобовому сопротивлению. Сам термин качество происходит из функции крыла – оно призвано создавать подъемную силу, а то, что при этом появляется побочный эффект – лобовое сопротивление, явление вредное. Поэтому логично отношение пользы к вреду назвать качеством. Можно построить зависимость Су от Сх на графике Рис. 8. Зависимость Сy от Cx в прямоугольных координатах называется полярой профиля. Длина отрезка между началом координат и любой точкой на поляре пропорциональна полной аэродинамической силе R, действующей на крыло, а тангенс угла наклона этого отрезка к горизонтальной оси равен аэродинамическому качеству К. Поляра позволяет очень просто оценивать изменение аэродинамического качества профиля крыла. Для удобства, на кривую принято наносить реперные точки, отмечающие соответствующий угол атаки крыла. По поляре легко оценить профильное сопротивление, максимально достижимое аэродинамическое качество профиля и его другие, важные параметры. Поляра зависит от числа Re. Свойства профиля удобно оценивать по семейству поляр, построенных в одной сетке координат для различных чисел Re. Поляры конкретных профилей получают двумя способами: - продувками в аэродинамической трубе; - теоретическими расчетами.
3. Аэродинамическое качество.
С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большею подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла.
Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла на данном угле атаки
(2.17)
где Y - подъемная сила, кг;
Q - сила лобового сопротивления, кг. Подставив в формулу значения Y и Q, получим
(2.18)
Чем больше аэродинамическое качество крыла, тем оно совершеннее. Величина качества для современных самолетов может достигать 14-15, а для планеров 45-50. Это означает, что крыло самолета может создавать подъемную силу, превышающую лобовое сопротивление в 14-15 раз, а у планеров даже в 50 раз.
Аэродинамическое качество характеризуется углом (см. Рис. 13).
или
(2.19)
Угол между векторами подъемной и полной аэродинамической сил называется углом качества. Чем больше аэродинамическое качество, тем меньше угол качества, и наоборот.
Аэродинамическое качество крыла, как видно из формулы (2.18), зависит от тех же факторов, что и коэффициенты Су и Сх, т. е. от угла атаки, формы профиля, формы крыла в плане, числа М полета и от обработки поверхности.
ВЛИЯНИЕ НА АЭРОДИНАМИЧЕСКОЕ КАЧЕСТВО УГЛА АТАКИ.
По известным значениям аэродинамических коэффициентов Су и Сх для различных углов атаки строят график К = f ()(Рис. 23).
Из графика видно, что с увеличением угла атаки до определенной величины аэродинамическое качество возрастает. При некотором угле атаки качество достигает максимальной величины Кмакс. Этот угол называется наивыгоднейшим углом атаки, наив.
На угле атаки нулевой подъемной силы о где Су=0
аэродинамическое качество будет равно нулю.
Влияние на аэродинамическое качество формы профиля связано с относительными толщиной и кривизной профиля. При этом большое влияние оказывают форма обводов профиля, форма носка и положение максимальной толщины профиля вдоль хорды (Рис. 24).
| |
Рис. 23 График зависимости аэродинамического качества от угла атаки | Рис. 24 Зависимость аэродинамического качества от угла атаки и толщины профиля |
| |
Рис. 25 . Образование подсасывающей силы | Рис. 26 Изменение аэродинамического качества крыла в зависимости от числа М |
При обтекании профилей с закругленными и утолщенными носками на носке профиля образуется подсасывающая сила, которая может значительно уменьшить лобовое сопротивление. Наибольшей величины она достигает на углах атаки, близких к наив, когда подсасывающая сила может превышать силу трения (Рис. 25).
Для получения больших значений Кмакс выбираются оптимальные толщина и кривизна профиля, формы обводов и удлинение крыла.
Форма крыла в плане также оказывает влияние на аэродинамическое качество крыла. Для получения наибольших значений качества наилучшей формой крыла является эллипсовидная с закругленной передней кромкой. Такое крыло имеет наименьшее индуктивное сопротивление. Увеличение удлинения крыла уменьшает его индуктивное сопротивление (вспомним ) следовательно, увеличивает аэродинамическое качество.
При увеличении числа М полета до появления волнового кризиса качество будет незначительно возрастать (для данного угла атаки), так как проявление сжимаемости воздуха увеличивает
Су. С наступлением волнового кризиса качество резко уменьшается, потому что коэффициент подъемной силы уменьшается, а Сх увеличивается (Рис. 26).
Состояние поверхности крыла (шероховатость, волнистость, отступление от заданной формы) влияет на величину профильного сопротивления. Поэтому, улучшая состояние поверхности крыла (или поддерживая ее в хорошем состоянии), можно добиться повышения аэродинамического качества самолета.
Вопросы 6 раздела.
-
Безопасность полетов как важнейшая эксплуатационно-техниченская характеристика, определяющая готовность к выполнению полетов. Актуальность проблемы обеспечения БП. Состояние БП в ГА РФ и в мире. Современное определение БП в Приложении 19 к Конвенции о международной ГА как состояние приемлемого риска. Определение риска для безопасности полетов.
Безопасность полётов — это состояние авиационной системы или организации, при котором риски, связанные с авиационной деятельностью, относящейся к эксплуатации воздушных судов или непосредственно обеспечивающей такую эксплуатацию, снижены до приемлемого уровня и контролируются[1].
Это понятие не следует путать с авиационной безопасностью. В зависимости от контекста понятие безопасности полётов может иметь различные интерпретации, например[2]:
-
отсутствие авиационных происшествий; -
отсутствие или приемлемые уровни рисков, то есть вероятности негативных последствий тех факторов, которые могут привести к ущербу; -
отношение работников к небезопасным действиям и условиям, то есть корпоративная культура безопасности с сопутствующими процессами выявления источников опасности и управления рисками с целью предупреждения авиационных происшествий (человеческих жертв, ущерба имуществу и окружающей среде).
Ни один вид человеческой деятельности и ни одна искусственная система не свободны от рисков. Безопасность относительное понятие, предполагающее наличие рисков и в "безопасной" системе при их приемлемом уровне. Соответственно, безопасность рассматривается как результат управления факторами риска — состояние, при котором риски причинения вреда лицам или имуществу снижены до приемлемого уровня и поддерживаются на этом, либо более низком уровне, путём систематического выявления источников опасности и контроля факторов риска[2].
Одной из задач в управлении безопасностью полётов является популяризация и распространение информации о безопасности полётов[2].
Приложение 19 из Конвенции. Безопасность полетов. Состояние, при котором риски, связанные с авиационной деятельностью, относящейся к эксплуатации воздушных судов или непосредственно обеспечивающей такую эксплуатацию, снижены до приемлемого уровня и контролируются.