ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 08.09.2021
Просмотров: 7150
Скачиваний: 267
увеличения объектива на увеличение окуляра. Например, увеличение микроскопа с иммерсионным объективом 90 и окуляром 10 составляет: 90x10=900.
Микроскопия в проходящем свете (светлопольная микроскопия). Используется для изучения окрашенных объектов в фиксированных препаратах.
Темнопольная микроскопия. Применяется для прижизненного изучения микробов в нативных неокрашенных препаратах. Микроскопия в темном поле зрения основана на явлении дифракции света при боковом освещении частиц, взвешенных в жидкости (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоид-конденсора, которые заменяют обычный конденсор в биологическом микроскопе (рис. 1.3). При этом способе освещения в объектив попадают только лучи, отраженные от поверхности объекта. В результате на темном фоне (неосвещенном поле зрения) видны ярко светящиеся частицы. Препарат в этом случае имеет вид, показанный на рис. 1.4, б (на вклейке).
Фазово-контрастная микроскопия. Предназначена для изучения нативных препаратов. Фазово-контрастное приспособление дает возможность увидеть в микроскоп прозрачные объекты. Свет проходит через различные биологические структуры с разной скоростью, которая зависит от оптической плотности объекта. В результате возникает изменение фазы световой волны, не воспринимаемое глазом. Фазовое устройство, включающее особые конденсор и объектив, обеспечивает преобразование изменений фазы световой волны в видимые изменения амплитуды. Таким образом достигается усиление различия в оптической плотности объектов. Они приобретают высокую контрастность, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным — светлое изображение объекта на темном фоне (см. рис. 1.4; на вклейке).
Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное устройство КФ-1 или КФ-4 (рис. 1.5), а также специальные осветители.
Люминесцентная (или флюоресцентная) микроскопия. Основана на явлении фотолюминесценции.
Люминесценция — свечение веществ, возникающее под воздействием внешнего излучения: светового, ультрафиолетового, ионизирующего и др. Фотолюминесценция — люминесценция объекта под влиянием света. Если освещать люминес-цирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта. Длина волны излуча-
Наряду с приборами "просвечивающего" типа используют сканирующие электронные микроскопы, обеспечивающие рельефное изображение поверхности объекта. Разрешающая способность этих приборов значительно ниже, чем у электронных микроскопов "просвечивающего" типа.
Правила работы с микроскопом. Работа с любым световым микроскопом включает установку правильного освещения поля зрения и препарата и его микроскопию различными объективами. Освещение может быть естественным (дневным) или искусственным, для чего используют специальные источники света — осветители разных марок.
При микроскопии препаратов с иммерсионным объективом следует строго придерживаться определенного порядка:
на приготовленный на предметном стекле и окрашенный мазок нанести каплю иммерсионного масла и поместить его на предметный столик, укрепив зажимами;
повернуть револьвер до отметки иммерсионного объектива 90х или 100х;
3) осторожно опустить тубус микроскопа до погруженияобъектива в каплю масла;
установить ориентировочный фокус при помощи макрометрического винта;
провести окончательную фокусировку препарата микрометрическим винтом, вращая его в пределах только одного оборота. Нельзя допускать соприкосновения объектива с препаратом, так как это может повлечь поломку покровного стекла или фронтальной линзы объектива (свободное расстояние иммерсионного объектива 0,1-1 мм).
По окончании работы микроскопа необходимо удалить масло с иммерсионного объектива и перевести револьвер на малый объектив 8х.
Для темнопольной и фазово-контрастной микроскопии используют нативные препараты ("раздавленная" капля и др., см. тему 2.1); микроскопируют с объективом 40х или специальным иммерсионным объективом с ирис-диафрагмой, позволяющей регулировать численную апертуру от 1,25 до 0,85. Толщина предметных стекол не должна превышать 1-1,5 мм, покровных – 0,15-0,2 мм.
Глава 2
МОРФОЛОГИЯ И УЛЬТРАСТРУКТУРА БАКТЕРИЙ
Введение. Бактерии относятся к доминиону Bacteria. Они являются одноклеточными прокариотическими (доядерными) организмами. Бактериальная клетка обладает характерными особенностями строения (ультраструктуры) и существенно отличается от эукариотической.
Бактерии имеют микроскопические размеры, большинство — в пределах разрешающей способности светооптической микроскопии (превышают 0,2 мкм), однако существуют и более мелкие формы.
Форма клетки относится к числу важных таксономических признаков бактерии. По форме клеток бактерии подразделяют на шаровидные, палочковидные, нитевидные и извитые (рис. 2.1).
Шаровидные бактерии — кокки (coccus — зерно) имеют правильную сферическую или эллипсоидную форму. Кокки могут образовывать характерные скопления, что обусловлено особенностями их деления и способностью дочерних клеток сохранять связь друг с другом после деления. Кокки могут располагаться беспорядочно (микрококки), парами (диплококки), в виде цепочек из 3 и более кокков (стрептококки), в виде пакетов, состоящих из 4 (тетракокки) и 8 (сарцины) кокков, и в виде скоплений, напоминающих виноградную гроздь (стафилококки).
Диплококки и стрептококки образуются при делении в одной плоскости, если дочерние клетки могут не отходить друг от друга. Упорядоченное деление в 2 и 3 плоскостях приводит к образованию тетракокков и сардин. При делении в разных плоскостях образуются стафилококки.
Палочковидные бактерии (бациллы) различаются по размерам, форме клеток и их концов, а также по расположению. Они могут быть тонкими, утолщенными на концах либо с обрубленными концами. Одни располагаются в виде одиночных клеток, другие парами — диплобактерии, третьи в виде цепочек — стрептобактерии.
Извитые формы бактерий представлены изогнутыми палочками, имеющими V4~~V2 завитка (вибрионы) или несколько (1-3) завитков (спириллы), и спиралевидными бактериями (спирохеты). Нитевидные и ветвистые формы характерны для актиномицетов.
Бактерии не имеют дифференцированного ядра. Нуклеоид бактерий — аналог ядра — не окружен мембраной и располагается в цитоплазме. Бактерии лишены внутриклеточных мембран и ограниченных ими органелл. Плазматическая мембрана (ПМ) является единственной мембраной, присущей всем бактериальным клеткам. В цитоплазме бактерий свободно располагаются рибосомы, могут также присутствовать включения и споры (рис. 2.2). Последние могут располагаться терминально, субтерминально и центрально. Снаружи от ПМ находится клеточная стенка (КС). По строению КС бактерии подразделяют на 2 группы: фирмикутные и грациликутные. КС может быть покрыта капсулой или капсулоподобной оболоч-
и др.)- Для выявления различных структур бактериальной клетки применяют нейтральные и кислые красители.
Различают простые и сложные методы окраски. Простые методы заключаются в окраске препарата одним красителем и позволяют изучать форму и размеры бактерий. Сложные методы (по Граму, Цилю—Нильсену и др.) включают последовательное использование нескольких красителей и дополнительных способов обработки препаратов. Тинкториальные свойства — способность воспринимать и удерживать красители — зависят от особенностей строения и химического состава бактериальной клетки. Сложные методы окраски позволяют дифференцировать бактерии по этим признакам и имеют диагностическое значение. Существуют специальные сложные методы окраски, которые используют для выявления структурных компонентов бактерий: жгутиков, капсул и разных цитоплазматичес-ких включений.
Методы темнопольной и фазово-контрастной микроскопии дают возможность прижизненного изучения бактерий, в частности их подвижности. Для этого готовят нативные (прижизненные) препараты.
Электронную микроскопию используют для изучения ультраструктуры (тонкой организации) бактерий.
Тема 2.1. ИЗУЧЕНИЕ МОРФОЛОГИИ БАКТЕРИЙ И ИХ ТИНКТОРИАЛЬНЫХ СВОЙСТВ. ПРОСТЫЕ МЕТОДЫ ОКРАСКИ
План
Программа
Морфология бактерий и методы ее изучения.
Подвижность бактерий и методы ее изучения.
Простые методы окраски препаратов.
Определение размеров бактерий.
Демонстрация
Приготовление мазков из бактериальных культур.
Красители, используемые в микробиологии.
Подвижность бактерий в препарате "висячая" капля.
Задание студентам
Микроскопировать и зарисовать готовые мазки, окрашенные простым методом (стафилококки, стрептококки, сарцины, палочки, стрептобациллы).
Приготовить мазки из бактерий, выращенных на жидкой и плотной питательных средах.
Окрасить мазки простым методом.
Микроскопировать и дифференцировать бактерии в мазках по основным морфологическим признакам и зарисовать их. 5. Определить размеры бактериальной клетки.
Методические указания
Приготовление препаратов для микроскопического исследования. Для приготовления препарата исследуемый материал берут из пробирки, колбы или чашки Петри бактериологической петлей или стерильной пипеткой. В некоторых случаях используют препаровальные иглы.
Петлю прокаливают в пламени горелки для уничтожения посторонних бактерий. Вращательным движением вынимают из пробирки ватную пробку, прижимая ее V и IV пальцами к ладони, и обжигают край пробирки. Осторожно вводят петлю в пробирку, охлаждая ее о внутреннюю поверхность стекла, после чего легким скользящим движением захватывают материал. Затем вынимают петлю из пробирки, снова обжигают край пробирки и закрывают пробкой. После приготовления препарата петлю обязательно прожигают (стерилизуют) в пламени. Жидкий материал из пробирки или колбы можно набирать пипеткой.
Приготовление нативных препаратов для прижизненного изучения микроорганизмов. Метод "висячей" капли. Препарат готовят на покровном стекле, в центр которого наносят одну каплю исследуемого материала. Затем предметное стекло с лункой, края которой предварительно смазывают вазелином, прижимают к покровному стеклу так, чтобы капля находилась в центре лунки. Быстрым движением переворачивают препарат покровным стеклом вверх. В правильно приготовленном препарате капля должна свободно висеть над лункой, не касаясь ее дна или края. Для микроскопии вначале используют объектив малого увеличения (8х или 10х), находят край капли, а затем устанавливают объектив 40х или иммерсионный и исследуют препарат. Определяют подвижность бактерий.
Метод "раздавленной" к а пли. На поверхность обезжиренного предметного стекла наносят каплю исследуемого материала или суспензию бактерий и покрывают ее покровным стеклом. Капля должна быть небольшой, не выходящей за край покровного стекла.
Прижизненная (витальная) окраска. Взвесь микроорганизмов вносят в каплю 0,001 % раствора метиленового синего или нейтрального красного. Затем готовят препарат "висячая" или "раздавленная" капля и микроскопируют.
После микроскопии препараты "раздавленной" или "висячей" капли опускают в дезинфицирующий раствор.
Приготовление фиксированных препаратов-мазков. Для приготовления препарата на обезжиренное предметное стекло наносят суспензию (взвесь) бактерий. Если мазок готовят из
жидкой питательной среды, то материал непосредственно наносят петлей на предметное стекло и распределяют его так, чтобы получить тонкий мазок. В других случаях первоначально на предметное стекло наносят каплю воды или изотонического раствора хлорида натрия, в которую петлей вносят исследуемый материал и готовят взвесь. При правильном распределении материала в мазке при микроскопии видны изолированные бактериальные клетки. Мазки высушивают на воздухе или в струе теплого воздуха над пламенем горелки, не давая капле закипать.
Фиксация препарата. Высушенные мазки подвергают термической или химической обработке, в результате которой бактерии погибают и плотно прикрепляются к поверхности стекла. Обычно для фиксации мазка предметное стекло проводят несколько раз через пламя горелки (мазком вверх).
Мазки крови, мазки-отпечатки из органов фиксируют погружением на 5-20 мин в метиловый или этиловый спирт или другие фиксирующие жидкости.
Окраска препаратов простым методом. Фиксированный мазок окрасить каким-либо одним красителем, например фуксином водным (1-2 мин) или метиленовым синим (3-5 мин), промыть водой, высушить и микроскопировать.
Приготовление и окраска препаратов для люминесцентной микроскопии. Для люминесцентной микроскопии на предметных стеклах готовят фиксированные препараты-мазки или на-тивные препараты, которые окрашивают специальными флюоресцентными красителями: акридиновым желтым, акридиновым оранжевым, ауромином, корифосфином. При работе с иммерсионным объективом используют нефлюоресцирующее масло.
Приготовление препаратов для электронной микроскопии. Приготовление препаратов для исследования в электронном микроскопе имеет ряд особенностей. Препараты готовят на специальных пленках-подложках, так как стекло непроницаемо для электронов. Исследуемый объект максимально очищают от посторонних примесей и наносят на пленку-подложку, предварительно помещенную на опорную металлическую сеточку. Для контрастирования применяют соединения тяжелых металлов (золото, осмий, рутений и др.).
Измерение микробных клеток. Измерение микробов осуществляют в ходе микроскопического исследования с помощью специальных приспособлений. Для измерения применяют окуляр-микрометр и объект-микрометр. Окуляр-микрометр служит для непосредственного измерения объекта и представляет собой стеклянную пластинку в окуляре, в центральной части которой нанесена шкала с 50 делениями. Объект-микрометр представляет собой стекло, в середине которого имеется эталонная шкала, разделенная на 100 частей. Цена деления шкалы