Файл: Девятая. Проектирование асинхронных машин.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 398

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

b'ш1(2) = (9.198)
(индекс 1 при расчете b'ш1, индекс 2 при расчете b'ш2).

Значения коэффициента kδ в зависимости от отношения δп/δ для открытых пазов приведены на рис. 9.54.

Пульсационные потери в зубцах статора
Pпул1 ≈ 0,11 ; (9.199)
пульсационные потери в зубцах ротора
Pпул2 ≈ 0,11 ; (9.200)


Рис. 9.54. К расчету пульсационных потерь

в асинхронных машинах


В этих формулах mz1 — масса стали зуб­цов статора, кг, определяется по (9.189); mz2 — масса стали зубцов ротора, кг:
mz2 = Z2hz2bz2срlст2kc2γc (9.201)
где hz2 — расчетная высота зубца ротора, м; bz2cp — средняя ширина зубца ротора, м:
bz2cp = (bz2max + bz2min) / 2.
Поверхностные и пульсационные потери в статорах двигателей с и короткозамкнутыми или фазными роторами со стержневой обмоткой обычно малы, так как в пазах таких роторов bш2 мало и пульса­ции индукции в воздушном зазоре над головками зубцов статора незначительны. Поэтому расчет этих потерь в статорах таких двигателей не проводят.

В общем случае добавочные потери в стали
Рстдоб = Рпов1 + Рпул1 + Рпов2 + Рпул2 (9.202)
и полные потери в стали асинхронных двигателей
Pст = Рст.осн + Рст.доб. (9.203)
Обычно Рст.доб приблизительно в 5—8 раз меньше, чем Рст.осн.

Электрические потерн в асинхронных двигателях рассчитывают раздельно в обмотках статоров и роторов.

Электрические потери во всех фазах обмотки статора, Вт,
Pэ1 = m1 r1. (9.204)
Электрические потери во всех фазах обмотки фазного ротора, Вт,
Рэ2 = m2
r2 = m1 . (9.205)
Электрические потери в обмотке короткозамкнутого ротора, Вт,
Pэ2 = m2 r2 = Z2 r2 (9.206)
или
Рэ2 = m1 . (9.207)
Электрические потери в щеточном контакте Рэ.ш, Вт, фазных ро­торов асинхронных двигателей, не имеющих приспособлений для подъема щеток и замыкания накоротко контактных колец при но­минальном режиме работы,
Рэ.щ = m2ΔUщIк.к, (9.208)
где ΔUщ — падение напряжения в скользящем контакте щетка — коль­цо, В; принимается в зависимости от марки щеток по табл. П 4.2; Iк.к — ток в кольце, А; при соединении обмотки ротора в звезду Iк.к = I2 ; при соединении обмотки ротора в треугольник (при m2 = 3) Iк.к = I2.

Механические и вентиляционные потери в асинхронных двигате­лях рассчитывают по приближенным формулам, полученным из опыта проектирования и эксплуатации двигателей. Коэффициент трения (Кт) учитывает конструкцию, скорость вращения, число пар полюсов, мощность двигателя. Его размерность изменяется в зависимости от вида формулы для определения Рмех (9.209 — 9.213).

Потери на трение в подшипниках и вентиляционные потери в двигателях с радиальной системой вентиляции без радиальных вен­тиляционных каналов, с короткозамкнутым ротором и вентиляци­онными лопатками на замыкающих кольцах, Вт,
Рмех ≈ Кт (n / 1000)2 (10D)3 ; (9.209)
Кт = 5 при 2р = 2; Кт = 6 при 2р ≥ 4 для двигателей с Da ≤ 0,25 м;

Кт = 6 при 2р = 2; Кт = 7 при 2р ≥ 4 для двигателей с Da > 0,25 м.

В двигателей с двигателях с внешним обдувом (0,1 ≤ Da ≤ 0,5 м)
Рмех = Кт (n /10)2D4a ; (9.210)
Кт = 1 для двигателей с 2р = 2 и Кт = 1,3(1 - Da) при 2р ≥ 4.

В двигателях с радиальной системой вентиляции средней и боль­шой мощности
Рмех = 1,2 2 р τ

3 (nк +1,1) 103(9.211)
где nк — число радиальных вентиляционных каналов; при отсутствии радиальных каналов nк = 0.

В двигателях с аксиальной системой вентиляции
Рмех = Кт(n/1000)2 (10 Dвент)3, (9.212)
где D вент — наружный диаметр вентилятора, м; в большинстве кон­струкций можно принять Dвент ≈ Da; Kт = 2,9 для двигателей с Da ≤ 0,25 м; Кт = 3,6 для двигателей с Da = 0,25...0,5 м.

В двигателях большой мощности (0,5 < Da < 0,9 м)
Рмех = Кт (10Da)3 (9.213)
В этом выражении коэффициент Кт принимается по табл. 9.29.

Таблица 9.29. К расчету механических потерь

двигателей большой мощности


2p

2

4

6

8

10

12

Кт

3,65

1,5

0,7

0,35

0,2

0,2


Потери на трение щеток о контактные кольца, Вт, рассчитывают для двигателей с фазными роторами при отсутствии приспособле­ний для подъема щеток и закорачивания контактных колец в номи­нальном режиме работы:
Ртр.щ = Ктр ρщ Sщ υк, (9.214)
где Ктр — коэффициент трения щеток о контактные кольца (обычно принимается равным 0,16—0,17); ρщ — давление на контактной поверхности щеток, кПа (см. табл. П 4.2); Sщ — общая площадь контакт­ной поверхности всех щеток, м2; vk — линейная скорость поверхности контактных колец, м/с.

Добавочные потери при нагрузке асинхронных двигателей возникают за счет действия потоков рассеяния, пульсаций индукции в воздушном зазоре, ступенчатости кривых распределения МДС об­моток статора и ротора и ряда других причин. В короткозамкнутых роторах, кроме того, возникают потери от поперечных токов, т. е. токов между стержнями, замыкающихся через листы сердечника ротора. Эти токи особенно заметны при скошенных пазах ротора. В
таких двигателях, как показывает опыт эксплуатации, добавоч­ные потери при нагрузке могут достигать 1...2 % (а в некоторых слу­чаях даже больше) от подводимой мощности. ГОСТ устанавливает редкие расчетные добавочные потери при номинальной нагрузке, равные 0,5 % номинальной потребляемой мощности. При расчетах потерь и КПД двигателей в режимах, отличных от номинального, значение добавочных потерь пересчитывают пропорционально квадрату токов:
Рдоб = Рдоб.ном (I1/I1ном)2. (9.215)
Коэффициент полезного действия двигателя
η = Р2 /P1 = 1 - / P1, (9.216)
где — сумма всех потерь в двигателе, Вт.

Ток холостого хода двигателя
(9.217)
При определении активной составляющей тока холостого хода принимают, что потери на трение и вентиляцию и потери в стали при холостом ходе двигателя такие же, как и при номинальном ре­жиме. При этом условии
Iх.х.а = (9.218)
Электрические потери в статоре при холостом ходе приближен­но принимаются равными:
Рэ1х.х = mI2μr1. (9.219)
Реактивная составляющая тока холостого хода
Iх.х.рIμ (9.220)
Коэффициент мощности при холостом ходе
cosφх.х = Iх.х.а / Iх.х. (9.221)
9.12. РАСЧЕТ РАБОЧИХ ХАРАКТЕРИСТИК
Рабочими характеристиками асинхронных двигателей называют зависимости P1, I1, cosφ, η, s1 = f (P2). Часто к ним относят также за­висимости М = f (P2) и I2 или = (P2) [6].

Методы расчета характеристик базируются на системе уравне­ний токов и напряжений асинхронной машины, которой соответст­вует Г-образная схема замещения (рис. 9.55). Г-образная схема полу­чена из Т-образной схемы замещения (см. рис. 9.47), в которой ветвь, содержащая параметр Z12, вынесена на вход схемы. Т-образ­ная и Г-образная схемы идентичны для данной конкретной ЭДС, для которой рассчитывают комплексный коэффициент
, равный взятому с обратным знаком отношению вектора напряжения фазы к вектору ЭДС —

В асинхронных двигателях при изменении тока от синхронного холостого хода до номинального изменяется незначительно. Поэ­тому для получения рабочих характеристик коэффициент , рассчи­тывают для синхронного холостого хода и принимают его значение неизменным. Это не вносит заметных погрешностей в расчет харак­теристик, так как значение коэффициента , во всем диапазоне изме­нения нагрузки от Р2 = 0 до Р2 = Р2ном изменяется лишь в третьем или четвертом знаке.

Корректировку коэффициента , обычно производят лишь при расчете пусковых характеристик или режимов работы двигателя с большими скольжениями, при которых ток статора существенно превышает номинальный.

Для расчета рабочих характеристик коэффициент определяют из выражения


Рис. 9.55. Г-образная схема замещения асинхронной машины (а)

и соответствующая ей векторная диаграмма (б)
где
(9.222)
В асинхронных двигателях мощностью более 2 — 3 кВт, как пра­вило, | γ | ≤ 1°, поэтому реактивной составляющей коэффициента с1, можно пренебречь, тогда приближенно
(9.223)
При более точных расчетах определяют и активную, и реактив­ную составляющие c1 по следующим формулам:
(9.224)
Полное значение
(9.225)
Как видно, выражение (9.223) может быть получено из (9.225) при условии r12 << х12 и r1 << х12, что практически всегда имеет место в асинхронных машинах мощностью Р