ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.11.2023
Просмотров: 171
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, жирных кислот и аминокислот подвергается превращениям с помощью кофермента А. Активной группой кофермента А является конечная тиоловая группа –SH тиоэтаноламина. Поэтому обычно этот кофермент обозначается КоА-SH. Благодаря наличию конечных тиоловых групп кофермент А может вступать в реакцию с конечными карбоксильными группами органических кислот:
СН3СООН + КоА-SH → СН3СО – S – КоА + Н2О
Гидролазы.Ферменты этого класса обеспечивают расщепление сложных соединений с одновременным присоединением воды. В зависимости от того, какие связи при этом разрываются, гидролазы делятся на подклассы. Пептидгидролазы – многочисленные протеолитические ферменты, обеспечивающие разложение микроорганизмами белков различного происхождения. Эстеразы – гидролазы, разрушающие сложноэфирные связи. Сюда входят липазы, катализирующие гидролиз жиров до глицерина и жирных кислот, пектинэстеразы, катализирующие расщепление пектиновых субстратов. Гидролиз полисахаридов осуществляют в основном амилазы и целлюлазы. Благодаря их активности расщепляются такие соединения, как крахмал и целлюлоза.
Лиазы. Эти ферменты катализируют негидролитическое отщепление атомных группировок с образованием двойных связей или присоединение группировок по месту этих двойных связей. У микроорганизмов активны декарбоксилазы, отщепляющие карбоксильную группу от аминокислот. Эти ферменты характерны для гнилостных микроорганизмов. В углеводном обмене важную роль играет альдолаза, обеспечивающая центральную реакцию превращения углеводов – расщепление гексозы на две триозы.
Изомеразы. Эти ферменты катализируют внутримолекулярные превращения, например, превращения одного изомера в другой. Триозофосфатизомераза обеспечивает взаимопревращения триоз, образующиеся при расщеплении гексоз. Галактозофосфатизомераза катализирует превращение галактозы в глюкозу.
Лигазы (синтетазы). Они обеспечивают реакции синтеза, сопровождаемые отщеплением остатков фосфорной кислоты от трифосфатов, например, АТФ. Благодаря этим ферментам синтезируются аминокислоты, ацетил-КоА, происходит карбоксилирование органических кислот.
Микроорганизмы обладают определенным набором ферментов. Это наследственно закрепленный генетический признак, что имеет большое значение при идентификации микроорганизмов. Ферменты локализуются в микробной клетке в различных структурных элементах (рибосомах, мезосомах, ЦПМ и др.), действие их происходит строго согласованно. В микробной клетке ферменты могут функционировать независимо друг от друга или же могут структурно объединяться в полиферментные комплексы. В этих комплексах ферменты тесно связаны друг с другом и вне его теряют значительную часть своей активности.
Конститутивные ферменты с постоянной скоростью синтезируются в клетке независимо от наличия в среде субстрата, на который распространяется их действие. Таким ферментам принадлежит основная роль в клеточном обмене. Индуцибельные (адаптивные) ферменты– это такие, которые активно синтезируются только в том случае, когда имеется субстрат, превращение которого они катализирую.
По действию ферменты подразделяются на эндо- и экзоферменты. Эндоферменты прочно связаны с клеточными структурами и функционируют только внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена. Большинство ферментов являются эндоферментами. Эти ферменты и после гибели микробной клетки временно остаются в активном состоянии. В результате их действия происходит самопереваривание, или автолиз клетки. При разрушении клетки ферменты поступают в окружающую среду. Экзоферментысвободно выделяются в окружающую среду. К ним относятся ферменты, катализирующие расщепление сложных органических веществ на более простые. Таим образом обеспечивается внеклеточное переваривание, т.е. превращение экзогенного субстрата в усвояемую форму. Кроме того, экзоферменты могут быть средством, с помощью которого микроб-паразит внедряется в тело хозяина; могут иметь защитное значение, инактивируя в среде вредные для клетки вещества.
Активность ферментов. Ферменты обладают высокой активностью. Ничтожные количества фермента обеспечивают значительную скорость реакции и вызывают превращения больших количеств реагирующих веществ.
Белковая природа ферментов обуславливает их лабильность – потерю активности под влиянием некоторых факторов, важнейшими из которых являются температура и реакция среды. Максимальная активность достигается в области оптимальной для микроорганизма температуры, после сего начинается падение активности, связанное с денатурацией белковой части фермента. Почти все ферменты необратимо разрушаются при 800С. В условиях близких к 00С и ниже ферментативная активность замедляется ив большинстве случаев приостанавливается. Большинство ферментов имеют максимальную активность в нейтральной среде, но для некоторых оптимум рН может находиться в кислой или щелочной области значений. Лучистая энергия разрушает ферменты. На активность ферментов влияет присутствие в среде различных химических соединений. Одни из них повышают активность ферментов (активаторы), другие – снижают (ингибиторы). Активаторами выступают витамины, двухвалентные катионы, ингибиторами –
соли тяжелых металлов, антибиотики.
Различают обратимое и необратимое ингибирование. При необратимом ингибировании фермент полностью или частично теряет активность в результате необратимого разрушения или модификации его функциональных групп. Обратимое ингибирование может быть конкурентным и неконкурентным. При конкурентном ингибировании ингибитор по структуре молекулы напоминает субстрат и может взаимодействовать с активным центром фермента, т.е. конкурировать за него с субстратом. В основе неконкурентного ингибирования лежит способность ингибитора взаимодействовать с какой-либо группой молекулы субстрата, существенно влияющей на его активность, но не входящей в активный центр.
Кинетика ферментативных реакций. Основным уравнением стационарной кинетики ферментативных реакций является уравнение Михаэлиса-Ментен:
v = (K+2 ∙ [Eо] ∙ [S] ) / (Km + [S] ) ,
где v – скорость реакции; Eо –общая концентрация фермента в системе; S - концентрация субстрата;
Km = (K-1 + K+2) / K+1 ,
где Km – константа Михаэлиса-Ментен; K+1 и K-1 - константы скоростей прямой реакции образования ферментно-субстратного комплекса ЕS и обратной реакции его диссоциации; K+2 – константа скорости образования конечного продукта. Максимальная скорость реакции достигается при такой концентрации субстрата, когда весь фермент связан в ферментно-субстратный комплекс.
2.Стафилококки. Характеристика, условия развития и токсинообразования. Продукты с высокой вероятностью токсинообразования данного микроорганизма.
Ответ:
Стафилококки впервые были обнаружены в гное из фурункула Л. Пастером в 1880 г. и изучены Ф. Розенбахом в 1884 г.
Относятся к роду Staphylococcus. В патологии человека имеют значение три вида: S. aureus - золотистый стафилококк, S. epidermidis - эпидермальный и S. saprophyticus - сапрофитный стафилококк. Заболевания чаще вызывают золотистые, реже - эпидермальные, еще реже - сапрофитные стафилококки.
Морфология, культуральные, биохимические свойства. Стафилококки имеют шаровидную форму, в чистой культуре располагаются в виде гроздьев винограда, в мазках из гноя располагаются поодиночке, попарно, небольшими скоплениями (Рис. 25)
*. Факультативные
анаэробы, лучше растут в аэробных условиях, при рН 7,2-7,8, на
простых питательных средах. Оптимальная температура для роста
37оС.
В жидких питательных средах образуют равномерное помутнение, на плотных средах образуют гладкие, выпуклые, блестящие, с ровными краями колонии. Благодаря образованию пигмента колонии могут быть золотистого, палевого, лимонно-желтого, белого цвета. Пигментообразование лучше всего выражено на средах с добавлением молока. Стафилококки могут размножаться на средах с большим количеством (8-10%) хлорида натрия, поэтому солевые среды применяются в качестве элективных: молочно-солевой агар, желточно-соле-
вой агар.
Стафилококки сбраживают углеводы с образованием кислоты без газа, обладают протеолитическими свойствами. S. aureus отличаются от двух других видов тем, что продуцируют фермент, вызывающий свертывание плазмы крови (плазмокоагулазу), ферментируют маннит в анаэробных условиях, продуцируют токсины и ферменты патогенности (Таблица 4).
Таблица 4
+
ДИФФЕРЕНЦИАЛЬНЫЕ ПРИЗНАКИ СТАФИЛОКОККОВ
Условные обозначения: "+" - наличие признака; "-" - отсутствие признака; "+" - признак непостоянен.
---------------------------------------------------------------
* См. цветную вкладку.
Наличие пигмента не является таксономическим признаком. Антигены. Стафилококки содержат целый ряд полисахаридных и
белковых антигенов. Классификация по антигенной структуре не получила практического применения.
Фаговары. По чувствительности к типовым бактериофагам стафилококки делятся на фаговары. Фаготипирование проводится с помощью международного набора бактериофагов.
Токсинообразование. Патогенные стафилококки продуцируют экзотоксины. Гемолизины вызывают гемолиз эритроцитов разных видов животных и человека. Основным из них является a-гемолизин, на основе которого приготовлен стафилококковый анатоксин. Стафилококки, продуцирующие гемолизин, образуют на кровяном агаре колонии, окруженные бесцветной зоной гемолиза. Лейкоцидины разрушают лейкоциты. Эксфолиатины вызывают пузырчатку новорожденных, отслойку эпителия кожи с образованием пузырей, "синдром ошпаренной кожи". Обнаружен токсин, вызывающий токсический шок (ТТШ). Энтеротоксины, вызывающие пищевую интоксикацию, в отличие от других экзотоксинов, термостабильны, не разрушаются при кипячении.
Ферменты, обладающие патогенным действием: гиалуронидаза, лецитиназа, плазмокоагулаза.
Стафилококки, устойчивые к пенициллину и другим b-лактамным антибиотикам, продуцируют b-лактамазу.
Устойчивость во внешней среде. Среди неспоровых бактерий стафилококки одни из самых устойчивых, погибают при 80оС через 20 минут, при кипячении гибнут сразу. Хорошо переносят высушивание. На предметах ухода за больными сохраняются десятки дней. Из дезинфицирующих средств наиболее эффективны хлорсодержащие: 1% раствор хлорамина убивает стафилококки за 2-5 минут, 3% фенол - за 15-20 минут. Стафилококки чувствительны к этиловому спирту (70%), анилиновым красителям, например, к бриллиантовой зелени, чувствительны к хлоргексидину.
Для стафилококков характерна изменчивость и приспособляемость к условиям внешней среды. Они быстро приобретают устойчивость к антибиотикам, к дезинфицирующим веществам. В больничных условиях, при постоянной циркуляции стафилококков среди больных, могут формироваться так называемые "госпитальные" стафилококки определенных фаготипов, высоковирулентные, обладающие множественной лекарственной устойчивостью, нечувствительные к дезинфицирующим средствам. Особенно большое значение в возникновении
СН3СООН + КоА-SH → СН3СО – S – КоА + Н2О
Гидролазы.Ферменты этого класса обеспечивают расщепление сложных соединений с одновременным присоединением воды. В зависимости от того, какие связи при этом разрываются, гидролазы делятся на подклассы. Пептидгидролазы – многочисленные протеолитические ферменты, обеспечивающие разложение микроорганизмами белков различного происхождения. Эстеразы – гидролазы, разрушающие сложноэфирные связи. Сюда входят липазы, катализирующие гидролиз жиров до глицерина и жирных кислот, пектинэстеразы, катализирующие расщепление пектиновых субстратов. Гидролиз полисахаридов осуществляют в основном амилазы и целлюлазы. Благодаря их активности расщепляются такие соединения, как крахмал и целлюлоза.
Лиазы. Эти ферменты катализируют негидролитическое отщепление атомных группировок с образованием двойных связей или присоединение группировок по месту этих двойных связей. У микроорганизмов активны декарбоксилазы, отщепляющие карбоксильную группу от аминокислот. Эти ферменты характерны для гнилостных микроорганизмов. В углеводном обмене важную роль играет альдолаза, обеспечивающая центральную реакцию превращения углеводов – расщепление гексозы на две триозы.
Изомеразы. Эти ферменты катализируют внутримолекулярные превращения, например, превращения одного изомера в другой. Триозофосфатизомераза обеспечивает взаимопревращения триоз, образующиеся при расщеплении гексоз. Галактозофосфатизомераза катализирует превращение галактозы в глюкозу.
Лигазы (синтетазы). Они обеспечивают реакции синтеза, сопровождаемые отщеплением остатков фосфорной кислоты от трифосфатов, например, АТФ. Благодаря этим ферментам синтезируются аминокислоты, ацетил-КоА, происходит карбоксилирование органических кислот.
Микроорганизмы обладают определенным набором ферментов. Это наследственно закрепленный генетический признак, что имеет большое значение при идентификации микроорганизмов. Ферменты локализуются в микробной клетке в различных структурных элементах (рибосомах, мезосомах, ЦПМ и др.), действие их происходит строго согласованно. В микробной клетке ферменты могут функционировать независимо друг от друга или же могут структурно объединяться в полиферментные комплексы. В этих комплексах ферменты тесно связаны друг с другом и вне его теряют значительную часть своей активности.
Конститутивные ферменты с постоянной скоростью синтезируются в клетке независимо от наличия в среде субстрата, на который распространяется их действие. Таким ферментам принадлежит основная роль в клеточном обмене. Индуцибельные (адаптивные) ферменты– это такие, которые активно синтезируются только в том случае, когда имеется субстрат, превращение которого они катализирую.
По действию ферменты подразделяются на эндо- и экзоферменты. Эндоферменты прочно связаны с клеточными структурами и функционируют только внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена. Большинство ферментов являются эндоферментами. Эти ферменты и после гибели микробной клетки временно остаются в активном состоянии. В результате их действия происходит самопереваривание, или автолиз клетки. При разрушении клетки ферменты поступают в окружающую среду. Экзоферментысвободно выделяются в окружающую среду. К ним относятся ферменты, катализирующие расщепление сложных органических веществ на более простые. Таим образом обеспечивается внеклеточное переваривание, т.е. превращение экзогенного субстрата в усвояемую форму. Кроме того, экзоферменты могут быть средством, с помощью которого микроб-паразит внедряется в тело хозяина; могут иметь защитное значение, инактивируя в среде вредные для клетки вещества.
Активность ферментов. Ферменты обладают высокой активностью. Ничтожные количества фермента обеспечивают значительную скорость реакции и вызывают превращения больших количеств реагирующих веществ.
Белковая природа ферментов обуславливает их лабильность – потерю активности под влиянием некоторых факторов, важнейшими из которых являются температура и реакция среды. Максимальная активность достигается в области оптимальной для микроорганизма температуры, после сего начинается падение активности, связанное с денатурацией белковой части фермента. Почти все ферменты необратимо разрушаются при 800С. В условиях близких к 00С и ниже ферментативная активность замедляется ив большинстве случаев приостанавливается. Большинство ферментов имеют максимальную активность в нейтральной среде, но для некоторых оптимум рН может находиться в кислой или щелочной области значений. Лучистая энергия разрушает ферменты. На активность ферментов влияет присутствие в среде различных химических соединений. Одни из них повышают активность ферментов (активаторы), другие – снижают (ингибиторы). Активаторами выступают витамины, двухвалентные катионы, ингибиторами –
соли тяжелых металлов, антибиотики.
Различают обратимое и необратимое ингибирование. При необратимом ингибировании фермент полностью или частично теряет активность в результате необратимого разрушения или модификации его функциональных групп. Обратимое ингибирование может быть конкурентным и неконкурентным. При конкурентном ингибировании ингибитор по структуре молекулы напоминает субстрат и может взаимодействовать с активным центром фермента, т.е. конкурировать за него с субстратом. В основе неконкурентного ингибирования лежит способность ингибитора взаимодействовать с какой-либо группой молекулы субстрата, существенно влияющей на его активность, но не входящей в активный центр.
Кинетика ферментативных реакций. Основным уравнением стационарной кинетики ферментативных реакций является уравнение Михаэлиса-Ментен:
v = (K+2 ∙ [Eо] ∙ [S] ) / (Km + [S] ) ,
где v – скорость реакции; Eо –общая концентрация фермента в системе; S - концентрация субстрата;
Km = (K-1 + K+2) / K+1 ,
где Km – константа Михаэлиса-Ментен; K+1 и K-1 - константы скоростей прямой реакции образования ферментно-субстратного комплекса ЕS и обратной реакции его диссоциации; K+2 – константа скорости образования конечного продукта. Максимальная скорость реакции достигается при такой концентрации субстрата, когда весь фермент связан в ферментно-субстратный комплекс.
2.Стафилококки. Характеристика, условия развития и токсинообразования. Продукты с высокой вероятностью токсинообразования данного микроорганизма.
Ответ:
Стафилококки впервые были обнаружены в гное из фурункула Л. Пастером в 1880 г. и изучены Ф. Розенбахом в 1884 г.
Относятся к роду Staphylococcus. В патологии человека имеют значение три вида: S. aureus - золотистый стафилококк, S. epidermidis - эпидермальный и S. saprophyticus - сапрофитный стафилококк. Заболевания чаще вызывают золотистые, реже - эпидермальные, еще реже - сапрофитные стафилококки.
Морфология, культуральные, биохимические свойства. Стафилококки имеют шаровидную форму, в чистой культуре располагаются в виде гроздьев винограда, в мазках из гноя располагаются поодиночке, попарно, небольшими скоплениями (Рис. 25)
*. Факультативные
анаэробы, лучше растут в аэробных условиях, при рН 7,2-7,8, на
простых питательных средах. Оптимальная температура для роста
37оС.
В жидких питательных средах образуют равномерное помутнение, на плотных средах образуют гладкие, выпуклые, блестящие, с ровными краями колонии. Благодаря образованию пигмента колонии могут быть золотистого, палевого, лимонно-желтого, белого цвета. Пигментообразование лучше всего выражено на средах с добавлением молока. Стафилококки могут размножаться на средах с большим количеством (8-10%) хлорида натрия, поэтому солевые среды применяются в качестве элективных: молочно-солевой агар, желточно-соле-
вой агар.
Стафилококки сбраживают углеводы с образованием кислоты без газа, обладают протеолитическими свойствами. S. aureus отличаются от двух других видов тем, что продуцируют фермент, вызывающий свертывание плазмы крови (плазмокоагулазу), ферментируют маннит в анаэробных условиях, продуцируют токсины и ферменты патогенности (Таблица 4).
Таблица 4
+
ДИФФЕРЕНЦИАЛЬНЫЕ ПРИЗНАКИ СТАФИЛОКОККОВ
Признак | Вид | | | | | | | |
S.aureus | S.epidermidis | S.saprophyticus | | | | | | |
Образование: плазмокоагулазы | + | - | - | | | | | |
лецитиназы | | | | | | | | |
Ферментация: глюкозы в анаэробных условиях | + | + | - | | | | | |
маннита в аэробных условиях | + | - | + | | | | | |
маннита в анаэробных условиях | + | - | - | | | | | |
Образование a | токсина | | | | | | | |
Устойчивость к новобиоцину | - | - | + | | | | | |
| | | | | | | | |
Условные обозначения: "+" - наличие признака; "-" - отсутствие признака; "+" - признак непостоянен.
---------------------------------------------------------------
* См. цветную вкладку.
Наличие пигмента не является таксономическим признаком. Антигены. Стафилококки содержат целый ряд полисахаридных и
белковых антигенов. Классификация по антигенной структуре не получила практического применения.
Фаговары. По чувствительности к типовым бактериофагам стафилококки делятся на фаговары. Фаготипирование проводится с помощью международного набора бактериофагов.
Токсинообразование. Патогенные стафилококки продуцируют экзотоксины. Гемолизины вызывают гемолиз эритроцитов разных видов животных и человека. Основным из них является a-гемолизин, на основе которого приготовлен стафилококковый анатоксин. Стафилококки, продуцирующие гемолизин, образуют на кровяном агаре колонии, окруженные бесцветной зоной гемолиза. Лейкоцидины разрушают лейкоциты. Эксфолиатины вызывают пузырчатку новорожденных, отслойку эпителия кожи с образованием пузырей, "синдром ошпаренной кожи". Обнаружен токсин, вызывающий токсический шок (ТТШ). Энтеротоксины, вызывающие пищевую интоксикацию, в отличие от других экзотоксинов, термостабильны, не разрушаются при кипячении.
Ферменты, обладающие патогенным действием: гиалуронидаза, лецитиназа, плазмокоагулаза.
Стафилококки, устойчивые к пенициллину и другим b-лактамным антибиотикам, продуцируют b-лактамазу.
Устойчивость во внешней среде. Среди неспоровых бактерий стафилококки одни из самых устойчивых, погибают при 80оС через 20 минут, при кипячении гибнут сразу. Хорошо переносят высушивание. На предметах ухода за больными сохраняются десятки дней. Из дезинфицирующих средств наиболее эффективны хлорсодержащие: 1% раствор хлорамина убивает стафилококки за 2-5 минут, 3% фенол - за 15-20 минут. Стафилококки чувствительны к этиловому спирту (70%), анилиновым красителям, например, к бриллиантовой зелени, чувствительны к хлоргексидину.
Для стафилококков характерна изменчивость и приспособляемость к условиям внешней среды. Они быстро приобретают устойчивость к антибиотикам, к дезинфицирующим веществам. В больничных условиях, при постоянной циркуляции стафилококков среди больных, могут формироваться так называемые "госпитальные" стафилококки определенных фаготипов, высоковирулентные, обладающие множественной лекарственной устойчивостью, нечувствительные к дезинфицирующим средствам. Особенно большое значение в возникновении