Файл: Пояснительная записка Общая характеристика учебного предмета Математика.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 116

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

70
Примерная рабочая программа
ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА
УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ». 79 КЛАССЫ
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
«Математику уже затем учить надо, что она ум в порядок приводит», — писал великий русский ученый Михаил Василье- вич Ломоносов. И в этом состоит одна из двух целей обучения геометрии как составной части математики в школе. Этой цели соответствует доказательная линия преподавания геометрии.
Следуя представленной рабочей программе, начиная с седьмого класса на уроках геометрии обучающийся учится проводить до- казательные рассуждения, строить логические умозаключения, доказывать истинные утверждения и строить контрпримеры к ложным, проводить рассуждения «от противного», отличать свойства от признаков, формулировать обратные утверждения.
Ученик, овладевший искусством рассуждать, будет применять его и в окружающей жизни. Как писал геометр и педагог Игорь
Федорович Шарыгин, «людьми, понимающими, что такое до- казательство, трудно и даже невозможно манипулировать». И в этом состоит важное воспитательное значение изучения геоме- трии, присущее именно отечественной математической школе.
Вместе с тем авторы программы предостерегают учителя от излишнего формализма, особенно в отношении начал и основа- ний геометрии. Французский математик Жан Дьедонне по это- му поводу высказался так: «Что касается деликатной проблемы введения «аксиом», то мне кажется, что на первых порах нуж- но вообще избегать произносить само это слово. С другой же стороны, не следует упускать ни одной возможности давать примеры логических заключений, которые куда в большей ме- ре, чем идея аксиом, являются истинными и единственными двигателями математического мышления».
Второй целью изучения геометрии является использование её как инструмента при решении как математических, так и практических задач, встречающихся в реальной жизни. Окон- чивший курс геометрии школьник должен быть в состоянии определить геометрическую фигуру, описать словами данный чертёж или рисунок, найти площадь земельного участка, рас- считать необходимую длину оптоволоконного кабеля или тре- буемые размеры гаража для автомобиля. Этому соответствует вторая, вычислительная линия в изучении геометрии в школе.
Данная практическая линия является не менее важной, чем

МАТЕМАТИКА. 5—9 классы
71
первая. Ещё Платон предписывал, чтобы «граждане Прекрас- ного города ни в коем случае не оставляли геометрию, ведь не- маловажно даже побочное её применение — в военном деле да, впрочем, и во всех науках — для лучшего их усвоения: мы ведь знаем, какая бесконечная разница существует между человеком причастным к геометрии и непричастным». Для этого учителю рекомендуется подбирать задачи практического характера для рассматриваемых тем, учить детей строить математические мо- дели реальных жизненных ситуаций, проводить вычисления и оценивать адекватность полученного результата. Крайне важно подчёркивать связи геометрии с другими предметами, мотиви- ровать использовать определения геометрических фигур и по- нятий, демонстрировать применение полученных умений в фи- зике и технике. Эти связи наиболее ярко видны в темах «Век- торы», «Тригонометрические соотношения»,«Метод координат» и «Теорема Пифагора».
В заключение сошлёмся на великого математика и астронома
Иоганна Кеплера, чтобы ещё раз подчеркнуть и метапредмет- ное, и воспитательное значение геометрии: “Geometria una et aeterna est in mente Dei refulgens: cuius consortium hominibus tributum inter causas est, cur homo sit imago Dei”
1
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ
Согласно учебному плану в 7—9 классах изучается учебный курс «Геометрия», который включает следующие основные раз- делы содержания: «Геометрические фигуры и их свойства»,
«Измерение геометрических величин», а также «Декартовы координаты на плоскости», «Векторы», «Движения плоскости» и «Преобразования подобия».
Учебный план предусматривает изучение геометрии на базо- вом уровне, исходя из не менее 68 учебных часов в учебном году, всего за три года обучения — не менее 204 часов.
1
Геометрия едина и вечна, она блистает в Божьем духе. Наша при- частность к ней служит одним из оснований, по которым человек должен быть образом Божьим (http://www.astro-cabinet.ru/library/
Kepler/Tab_1.htm)


72
Примерная рабочая программа
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА (ПО ГОДАМ ОБУЧЕНИЯ)
1   2   3   4   5   6   7   8   9   10

7 класс
Начальные понятия геометрии. Точка, прямая, отрезок, луч.
Угол. Виды углов. Вертикальные и смежные углы. Биссектри- са угла. Ломаная, многоугольник. Параллельность и перпенди- кулярность прямых.
Симметричные фигуры. Основные свойства осевой симме- трии. Примеры симметрии в окружающем мире.
Основные построения с помощью циркуля и линейки.
Треугольник. Высота, медиана, биссектриса, их свойства.
Равнобедренный и равносторонний треугольники. Неравенство треугольника.
Свойства и признаки равнобедренного треугольника. При- знаки равенства треугольников.
Свойства и признаки параллельных прямых. Сумма углов треугольника. Внешние углы треугольника.
Прямоугольный треугольник. Свойство медианы прямо- угольного треугольника, проведённой к гипотенузе. Признаки равенства прямоугольных треугольников. Прямоугольный тре- угольник с углом в 30.
Неравенства в геометрии: неравенство треугольника, нера- венство о длине ломаной, теорема о большем угле и большей стороне треугольника. Перпендикуляр и наклонная.
Геометрическое место точек. Биссектриса угла и серединный перпендикуляр к отрезку как геометрические места точек.
Окружность и круг, хорда и диаметр, их свойства. Взаимное расположение окружности и прямой. Касательная и секущая к окружности. Окружность, вписанная в угол. Вписанная и опи- санная окружности треугольника.
8 класс
Четырёхугольники. Параллелограмм, его признаки и свой- ства. Частные случаи параллелограммов (прямоугольник, ромб, квадрат), их признаки и свойства. Трапеция, равнобокая тра- пеция, её свойства и признаки. Прямоугольная трапеция.
Метод удвоения медианы. Центральная симметрия.
Теорема Фалеса и теорема о пропорциональных отрезках.
Средние линии треугольника и трапеции. Центр масс треуголь- ника.
Подобие треугольников, коэффициент подобия. Признаки по- добия треугольников. Применение подобия при решении прак- тических задач.

МАТЕМАТИКА. 5—9 классы
73
Свойства площадей геометрических фигур. Формулы для площади треугольника, параллелограмма, ромба и трапеции.
Отношение площадей подобных фигур.
Вычисление площадей треугольников и многоугольников на клетчатой бумаге.
Теорема Пифагора. Применение теоремы Пифагора при ре- шении практических задач.
Синус, косинус, тангенс острого угла прямоугольного треу- гольника. Основное тригонометрическое тождество. Тригономе- трические функции углов в 30, 45 и 60.
Вписанные и центральные углы, угол между касательной и хордой. Углы между хордами и секущими. Вписанные и опи- санные четырёхугольники. Взаимное расположение двух окружностей. Касание окружностей. Общие касательные к двум окружностям.
9 класс
Синус, косинус, тангенс углов от 0 до 180. Основное триго- нометрическое тождество. Формулы приведения.
Решение треугольников. Теорема косинусов и теорема сину- сов. Решение практических задач с использованием теоремы косинусов и теоремы синусов.
Преобразование подобия. Подобие соответственных элемен- тов.
Теорема о произведении отрезков хорд, теоремы о произведе- нии отрезков секущих, теорема о квадрате касательной.
Вектор, длина (модуль) вектора, сонаправленные векторы, противоположно направленные векторы, коллинеарность век- торов, равенство векторов, операции над векторами. Разложе- ние вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов, применение для нахождения длин и углов.
Декартовы координаты на плоскости. Уравнения прямой и окружности в координатах, пересечение окружностей и пря- мых. Метод координат и его применение.
Правильные многоугольники. Длина окружности. Градусная и радианная мера угла, вычисление длин дуг окружностей.
Площадь круга, сектора, сегмента.
Движения плоскости и внутренние симметрии фигур
(элементарные представления). Параллельный перенос. Пово- рот.


74
Примерная рабочая программа
ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРИМЕРНОЙ
РАБОЧЕЙ ПРОГРАММЫ КУРСА (ПО ГОДАМ ОБУЧЕНИЯ)
Освоение учебного курса «Геометрия» на уровне основного общего образования должно обеспечивать достижение следую- щих предметных образовательных результатов:
7 класс
6
Распознавать изученные геометрические фигуры, определять их взаимное расположение, изображать геометрические фи- гуры; выполнять чертежи по условию задачи. Измерять ли- нейные и угловые величины. Решать задачи на вычисление длин отрезков и величин углов.
6
Делать грубую оценку линейных и угловых величин предме- тов в реальной жизни, размеров природных объектов. Раз- личать размеры этих объектов по порядку величины.
6
Строить чертежи к геометрическим задачам.
6
Пользоваться признаками равенства треугольников, исполь- зовать признаки и свойства равнобедренных треугольников при решении задач.
6
Проводить логические рассуждения с использованием геоме- трических теорем.
6
Пользоваться признаками равенства прямоугольных треу- гольников, свойством медианы, проведённой к гипотенузе прямоугольного треугольника, в решении геометрических за- дач.
6
Определять параллельность прямых с помощью углов, кото- рые образует с ними секущая. Определять параллельность прямых с помощью равенства расстояний от точек одной пря- мой до точек другой прямой.
6
Решать задачи на клетчатой бумаге.
6
Проводить вычисления и находить числовые и буквенные значения углов в геометрических задачах с использованием суммы углов треугольников и многоугольников, свойств углов, образованных при пересечении двух параллельных прямых секущей. Решать практические задачи на нахожде- ние углов.
6
Владеть понятием геометрического места точек. Уметь опре- делять биссектрису угла и серединный перпендикуляр к от- резку как геометрические места точек.
6
Формулировать определения окружности и круга, хорды и диаметра окружности, пользоваться их свойствами. Уметь применять эти свойства при решении задач.

МАТЕМАТИКА. 5—9 классы
75 6
Владеть понятием описанной около треугольника окружно- сти, уметь находить её центр. Пользоваться фактами о том, что биссектрисы углов треугольника пересекаются в одной точке, и о том, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
6
Владеть понятием касательной к окружности, пользоваться теоремой о перпендикулярности касательной и радиуса, про- ведённого к точке касания.
6
Пользоваться простейшими геометрическими неравенства- ми, понимать их практический смысл.
6
Проводить основные геометрические построения с помощью циркуля и линейки.
8 класс
6
Распознавать основные виды четырёхугольников, их элемен- ты, пользоваться их свойствами при решении геометриче- ских задач.
6
Применять свойства точки пересечения медиан треугольника
(центра масс) в решении задач.
6
Владеть понятием средней линии треугольника и трапеции, применять их свойства при решении геометрических задач.
Пользоваться теоремой Фалеса и теоремой о пропорциональ- ных отрезках, применять их для решения практических задач.
6
Применять признаки подобия треугольников в решении гео- метрических задач.
6
Пользоваться теоремой Пифагора для решения геометриче- ских и практических задач. Строить математическую модель в практических задачах, самостоятельно делать чертёж и на- ходить соответствующие длины.
6
Владеть понятиями синуса, косинуса и тангенса острого угла прямоугольного треугольника. Пользоваться этими понятия- ми для решения практических задач.
6
Вычислять (различными способами) площадь треугольника и площади многоугольных фигур (пользуясь, где необходимо, калькулятором). Применять полученные умения в практиче- ских задачах.
6
Владеть понятиями вписанного и центрального угла, исполь- зовать теоремы о вписанных углах, углах между хордами (се- кущими) и угле между касательной и хордой при решении геометрических задач.
6
Владеть понятием описанного четырёхугольника, применять свойства описанного четырёхугольника при решении задач.


76
Примерная рабочая программа
6
Применять полученные знания на практике — строить мате- матические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и три- гонометрии (пользуясь, где необходимо, калькулятором).
9 класс
6
Знать тригонометрические функции острых углов, находить с их помощью различные элементы прямоугольного треу- гольника («решение прямоугольных треугольников»). Нахо- дить (с помощью калькулятора) длины и углы для нетаблич- ных значений.
6
Пользоваться формулами приведения и основным тригоно- метрическим тождеством для нахождения соотношений меж- ду тригонометрическими величинами.
6
Использовать теоремы синусов и косинусов для нахождения различных элементов треугольника («решение треугольни- ков»), применять их при решении геометрических задач.
6
Владеть понятиями преобразования подобия, соответствен- ных элементов подобных фигур. Пользоваться свойствами подобия произвольных фигур, уметь вычислять длины и на- ходить углы у подобных фигур. Применять свойства подобия в практических задачах. Уметь приводить примеры подобных фигур в окружающем мире.
6
Пользоваться теоремами о произведении отрезков хорд, о произведении отрезков секущих, о квадрате касательной.
6
Пользоваться векторами, понимать их геометрический и фи- зический смысл, применять их в решении геометрических и физических задач. Применять скалярное произведение век- торов для нахождения длин и углов.
6
Пользоваться методом координат на плоскости, применять его в решении геометрических и практических задач.
6
Владеть понятиями правильного многоугольника, длины окружности, длины дуги окружности и радианной меры угла, уметь вычислять площадь круга и его частей. Применять по- лученные умения в практических задачах.
6
Находить оси (или центры) симметрии фигур, применять движения плоскости в простейших случаях.
6
Применять полученные знания на практике — строить мате- матические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и три- гонометрических функций (пользуясь, где необходимо, каль- кулятором).

МАТЕМАТИКА. 5—9 классы
77
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО КУРСА (ПО ГОДАМ ОБУЧЕНИЯ)
7 класс (не менее 68 ч)
Название
раздела (темы)
курса (число часов)
Основное содержание
Основные виды
деятельности обучающихся
Простейшие геометрические фигуры и их свойства. Измерение геометрических величин (14 ч)
Простейшие геометрические объ- екты: точки, прямые, лучи и углы, многоугольник, ломаная. Смежные и вертикальные углы. Работа с простейшими чертежами. Измерение линейных и угловых величин, вычисление отрезков и углов. Периметр и площадь фигур, со- ставленных из прямоугольников
Формулировать
основные понятия и определе- ния. Распознавать
изученные геометрические фигу- ры,
определять
их взаимное расположение,
выполнять
чертёж по условию задачи.
Проводить
простейшие построения с помощью циркуля и линейки. Измерять
линейные и угловые величины гео- метрических и практических объектов. Определять
«на глаз» размеры реальных объ- ектов,
проводить
грубую оценку их размеров.
Решать
задачи на вычисление длин отрезков и величин углов. Решать
задачи на взаимное расположение гео- метрических фигур. Проводить
классификацию углов,
вычислять
линейные и угловые величины,
проводить
не- обходимые доказательные рассуждения. Знакомиться с историей
развития геометрии