ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.04.2024

Просмотров: 66

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

В.1.Предел и непрерывность функции одной и нескольких переменных. Свойства функций, непрерывных на отрезке.

Функции нескольких переменных.

1) Пусть дана последовательность, элементами которой являются функции (1) и определены в некоторой области . Такая последовательность называется функциональной.

2)Пусть . Рассмотрим посл-ть .

В.7. Производная функции комплексного переменного. Геометрический смысл аргумента и модуля производной. Условия Коши – Римана. Аналитическая функция.

В.8. Степенные ряды в действительной и комплексной области. Радиус сходимости.

В.9. Ряд Фурье по ортогональной системе функций. Неравенство Бесселя, равенство Парсеваля, сходимость ряда Фурье.

Ряд Фурье с периодом .

12. Вероятностное пространство. Случайные величины. Закон больших чисел в форме Чебышева.

В.13. Задача Коши для уравнения колебания струны. Формула Даламбера.

В.14. Постановка краевых задач для уравнения теплопроводности. Метод разделения переменных для решения первой краевой задачи.

Функции нескольких переменных.

Ограничимся случаем функций от 3-х переменных.

Пусть в некоторой области D имеем функцию , возьмем точку в этой области. Если мы припишем и постоянные значения и и будем изменять , то и будет функцией от одной переменной в окрестности . Можно поставить вопрос о вычислении её производной в точке . Придадим значение приращение , тогда - частное приращение. По определению производной, она представляет собой предел

Эта производная называется частной производной функции по в точке .

Част. производ. обозначается : .

При условии

функция называется дифференцируемой в точке и (только в этом случае) выражение


,

т.е линейная часть приращения функции называется её (полным) дифференциалом и обозначается или или

Д. условие диф-ти. Если функция имеет частные производные в некоторой окрестности точки и эти производные непрерывны в самой точке , то функция диф-ма в этой точке.

Н. условие диф-ти. Если функция диф-ма в точке , то она непрерывна в этой точке.

Геометрический смысл производной.

Производная функций в точке геометрически представляет собой угловой коэффициент касательной, проведенной к кривой в точке .

Геометрический смысл дифференциала.

Дифференциал функции в точке равен приращению “ординаты касательной” MS к графику этой функции в точке , а приращение функции есть приращение “ординаты самой функции” в точке , соответствующее приращению аргумента, равному .


В.3. Определённый интеграл и его свойства. Основная формула интегрального исчисления.

Пусть функция определена на , . Разобьём этот отрезок на n произвольных частей точками: . Обозначим это разбиение через , а точки называются точками разбиения. В каждом из полученных частичных отрезков выберем произвольную точку . Через обозначим разность , который называют длинной частичного отрезка .

Обозначим сумму:

,(1) которая называется интегральной суммой для функции на , соответствующей данному разбиению на частичные отрезки и данному выбору промежуточных точек .

Геометрический смысл суммы :

- это сумма площадей прямоугольников с основаниями и высотами если >0. Обозначим через - длину наибольшего частичного отрезка разбиения .


Опр.: если существует конечный предел I интегрирования суммы (1) при , то этот предел называется определенным интегралом от функции по отрезку , обозначается:или .

Свойства :

1) 2) если функция интегрируема на е, то она интегрируема на

3) если функция интегрируема на и существует число , то

4) если и интегрируемы на , то :

5) если и интегрируемы на , то их производные будут интегрируемы на .

6) если функция интегрируема и на отрезке , то 7)


8)

9) если и интегрируемы на , и , то

10) если интегрируема на , и если во всем этом промежутке имеет место неравенство , то справедливо:

11) Т. (о среднем): Пусть функция интегрируема на , и на выполняется , тогда , .

Т. Ньютона – Лейбница. (основная формула).

Если функция непрерывна на , то какая бы ни была её первообразная на , справедлива формула:

Опр.: Функция называется первообразной для функции на некотором промежутке, если для всех значений из этого промежутка выполняется равенство: .